
How improve Set Similarity Join based on prefix
approach in distributed environment

Song Zhu, Luca Gagliardelli, Giovanni Simonini, Domenico Beneventano
Department of Engineering Enzo Ferrari
Università di Modena e Reggio Emilia

Modena, Italy

{song.zhu;luca.gagliardelli;giovanni.simonini;domenico.beneventano}@unimore.it

Abstract—Set similarity join is an essential operation to find
similar pairs of records in data integration and data analytics
applications. To cope with the increasing scale of the data, several
techniques have been proposed to perform set similarity join
using distributed frameworks (e.g. MapReduce). In particular,
it is publicly available a MapReduce implementation of the
PPJoin, that was experimentally demonstrated as one of the
best set similarity join algorithm. However, these techniques
produce huge amounts of duplicates in order to perform a
successful parallel processing. Moreover, these approaches do
not guarantee the load balancing, which generates skewness
problem and less scalability of these techniques. To address
these problems, we propose a duplicate-free technique called
TTJoin, that performs set similarity join efficiently by utilizing
an innovative filter derived from the prefix filter. Moreover, we
implemented TTJoin on Apache Spark, that is one of the
most innovative distributed framework. Several experiments on
real-world datasets demonstrate the effectiveness of proposed
solution with respect to either traditional TTJoin MapReduce
implementation.

Index Terms—Similarity Join, Big Data, Record Linkage

I. INTRODUCTION

With the increasing of the volume of data (i.e. Big Data)

managing and extracting valuable information from these

huge amount of data has become a hot research topic both

in Academy and Industry. Different techniques have been

proposed to create tools that are able to explore [1] [2] [3] and

to integrate [4] [5] in a efficiently way high volume of data.

One of the most promising approach to find similar records

on big datasets is the similarity join. Similarity join is used in

a wide range of applications to find similar data, ranging from

data integration to marketing analysis. Moreover, it can be

used in keyword search engines to perform similarity queries

[6] [7]. In many scenarios data can be transformed into sets, for

example documents can be see as a set of words, or in market

analysis user purchases can be considered as a set of tokens

related to a specific user. Thus, computation of set similarity

can be used in a many applications.

The set similarity join finds pairs of similar sets from one

or more set collections. The join between the same collection

is also called self join, while the join between two different

collections (R and S) is called RSJoin. Two sets are similar

if their overlap (i.e. number of shared elements) exceeds

some user-defined threshold. The efficient computation of set

similarity join has received much attention from both academia

and industry, and different techniques have been developed. In

particular, one of the most famous techniques for set similarity

join is the PPJoin [8], that is also one of the fastest

one [9]. PPJoin is an improvement of a previous work

based on prefix filter, called SSJoin [10]. A MapReduce

implementation based on Hadoop of PPJoin is presented

in [11]. This parallel PPJoin implementation has two main

issues on large datasets:

• generation of duplicate pairs, that are eliminated at the

end of the process, slowing the execution;

• Load balancing, due to different frequency of tokens,

causing skewness (i.e., workers can have significant dif-

ferent execution times).

To solve these issues we propose a variant of PPJoin that

avoid the generation of duplicates in a distributed environment,

called PPADJoin (Avoid Duplicates) and a new load balanc-

ing method. Moreover, we propose a novel filter based on the

prefix filter principle called Two Tokens Join (TTJoin).
From the experimental point of view, we first show the

performance improvement of PPADJoin and then we show

how TTJoin outperforms PPADJoin in all experiments.
The rest of paper is structured as follows: Section II presents

the related works on SSJoin and PPJoin. The proposed

improvements are illustrated in Section III. Then, experimental

results are shown in Section IV. Finally, the conclusions are

presented in Section V.

II. PRELIMINARIES

A. SSJoin
SSJoin proposed by Chaudhuri et al. [10], is based on

overlap similarity (i.e. the elements shared by two records).

The overlap similarity is defined as follow:
Definition 1 (Overlap similarity): OVERLAP SIMILARITY.

Given two sets s1, s2 (representing two records) we consider

the overlap similarity, denoted Overlap(s1, s2) as Overlap(s1,

s2) = |s1 ∩ s2|.
In order to generate less candidate pairs the au-

thors proposed an implementation of SSJoin using the

prefix-filter.
A formal principle of prefix-filter is given in [8].

To define the prefix of a set its elements have to be ordered

by a given ordering.

844

2018 International Conference on High Performance Computing & Simulation

978-1-5386-7879-4/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCS.2018.00136

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 1 (The Prefix Filter principle:): Given a global

ordering O of the token universe U and a collection of sets,

each with tokens sorted in the order of O. Let the p-prefix of

a set x be the first p tokens of x. If Overlap(x, y) ≥ α, then

the (|x| − α + 1), prefix of x, and the (|y| − α + 1), prefix

of y, must share at least one token. Where α is the requested

overlapping.

By using this principle, it is possible to find pairs with at

least one common element in the prefix. Hence, it generates

fewer pairs than the cartesian product, this means that there are

less pairs to verify. Another interesting point of this algorithm

is the ordering, since using the rare tokens of a set as prefix

tokens can minimize the number of generated candidate pairs.

So the order of tokens is usually given by the document

frequency (i.e. in how many documents a token appears).

It is also possible to use SSJoin with other similarity

measures (e.g. Edit distance, Dice, Cosine, Jaccard) that can

be re-conducted to the overlap one.

B. PPJoin

PPJoin proposed by Xiao et al. in [8] is an

improvement of SSJoin. It adds a new filter called

position-filter that prune more efficiently the

pairs, reducing the number of candidate pairs. There-

fore, the new algorithm use both prefix-filter and

position-filter, it is called PPJoin. Also, in the

same paper the authors proposed an other filter called

suffix-filter. However, in [9] it was demonstrated that

the suffix-filter is not convenient, since it is too

complex and expensive in term of time.

C. Other similarity join derived from Prefix-Filter

In literature there are several join techniques derived from

prefix-filter:

• GroupJoin [12];

• MPJoin [13];

• MPJoin-PEL [14];

• AdaptJoin [15].

Each of these joins has its specific quality and application

domains, it is possible to find a comparison of them in [9].

From this evaluation PPJoin emerges as the most promising

techniques, so we choose to use it for our work.

D. MapReduce and Spark

MapReduce is a programming model and an associated

implementation for processing and large datasets with a par-

allel, distributed algorithm on a cluster of machines [16]. The

principle is simple, it uses the ”divide and conquer” strategy

to process a large amount of data. The large datasets are stored

into GFS (Google File System), which is a distributed file sys-

tem; this means that the dataset is stored into many machines

that compose the GFS. With the MapReduce paradigm, large

input data are divided into smaller partitions and processed in

distributed fashion.

It allows to write distributed programs in a simple way,

since it provides an high level of abstraction, hiding the

parallelization details, and providing a fault tolerance system.

An open source implementation of GFS and MapReduce is

available with the name of Apache Hadoop, and its distributed

file system is called HDFS.

With Apache Hadoop, the open source community has a

powerful framework to develop distributed application. How-

ever, the framework has several limitations. Applications such

as machine learning and graph analytics iteratively process the

data, this means multiple rounds of map reduce iterations are

performed on the same data. In MapReduce, every job reads

its input data from HDFS, processes it, and then writes it back

to HDFS. For the subsequent job to consume the output of a

previously run job, it has to repeat the read, process, and write

cycle. For iterative algorithms, which want to read once, and

iterate over the data many times, the MapReduce model poses

a significant overhead. To overcome the above limitations of

MapReduce, Apache Spark uses Resilient Distributed Datasets

(RDDs) [17], which implements in-memory data structures

used to cache intermediate data across a set of nodes. Since

RDDs can be kept in memory, algorithms can iterate over

RDD data many times very efficiently [18]. A performance

comparison and analysis between the two frameworks is

presented in [18].

E. PPJoin by using MapReduce framework

In [11], authors proposed a MapReduce implementa-

tion of PPJoin. During map and shuffle phase, the

prefix-filter is exploited to generate blocks (i.e. cluster

of sets): sets that have at least one common token are grouped

in the same block. During reduce phase, in each block, the

sets are combined to obtain candidate pairs, and the pairs are

pruned using the position-filter.

This PPJoin implementation have two main issues: gen-

erates duplicate pairs, and the workload is unbalanced.

a) Generation of duplicate pairs: One of the main prob-

lem is the generation of many duplicates, due to multiple

overlapping tokens in the prefix.

The problem is presented in Figure 2. Records 1 and 21

have in common tokens A and B. This leads, records 1 and

21 are together in block A and B. Thus, both blocks generate

the pair (1, 21).
Duplicates causes performance issues, since their elimina-

tion is an expensive operation.

b) Record skew: The main workload of PPJoin is in

the reducing phase, where the sets are combined and filtered.

The computation time of this phase depends by the number of

sets contained in each block, more sets are grouped in a block,

more time is required to compute that block. The number of

sets in the blocks depends by the token frequencies in the

prefixes. The workload balancing is a very important task for

distributed applications.

III. PPJOIN IMPROVEMENTS

A. PPJoin variant: Avoid Duplicates

We designed a variant of PPJoin to avoid the generation

of duplicates, i.e. PPADJoin (Avoid Duplicates) As men-

845

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: MapReduce implementation of PPJoin.

Fig. 2: Duplicate generation example

tioned the generation of duplicate candidate pairs is caused

by records that have more than one overlapping token in the

prefix. As shown in the example the pair 〈1,21〉 is present

two times in the results, due to multiple overlap in prefix

tokens. Our solution is to generate candidate pairs only from

one overlapping prefix token .

To achieve this, when PPADJoin combines the records

in a block checks if the last common token in the prefix of

a pair corresponds to the token that has generated that block,

and only if this is true emits the pair. In this way, if two tokens

co-occur in more than one block, will be emitted only once,

by their last common token. A prerequisite of this approach is

that the tokens in the sets have to be sorted based on a global

order.

The pseudo-code of candidate pairs generation is shown in

Algorithm 1.

B. Load Balancing

In a distributed environment one of the most important issue

is load balancing; if the workload is not well distributed there

can be skew problems, that means that some workers will

finish their jobs before others, remaining idle, wasting com-

putation resources. The operation with the largest computation

time is the main target to balance. In the case of PPJoin is

the candidate pairs generation step, since PPJoin performs

the partition of records based on the common prefix tokens,

these prefix tokens can have very different frequencies. As

Algorithm 1: PPADJoin - Candidate pairs genera-

tion
input : PrefixToken token that generates the block
input : Ri sets of the first dataset (R) that contains the

PrefixToken. ri ∈ Ri is (rid, rtokens)
input : Si sets of the second dataset (S) that contains the

PrefixToken. si ∈ si is (sid, stokens)
input : t the request similarity threshold
output: CandidatePairs
CandidatePairs← {}
for r ∈ Ri do

for s ∈ Si do
if passLengthF ilter(|rtokens|, |stokens|, t)) then

lastOverlapToken←
getLastOverlap(rtokens, stokens, t)

if PrefixToken = lastOverlapToken then
overlaps←
getOverlaps(rtokens, stokens, t)

if overlaps > 0 then
CandidatePairs←
CandidatePairs ∪ (rid, sid)

end
end

end
end

end

846

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



consequence, the computation time can be vary a lot. To

distribute the workload, a custom partitioner is designed. The

input of this step are tuples (tid, [(rid, [tokens], position)]),
since PPJoin performs a group by tid, and the results are

tuples with a tid and an array of (rid, [tokens], position) with

same tid. PPJoin has to assign tid to task based on the

workload of candidate pair generation. The complexity of this

work load is based on the number of comparisons of records

of each tid, i.e. NC. For self join the number of comparison

is:

NC = rSize ∗ (rSize− 1)/2 (1)

Where rSize is the size of Array.

For RSJoin the number of combination is:

NC = rSize ∗ sSize (2)

Where rSize is the number of records of the first dataset

in the array, and sSize is the number of records of the second

dataset in the array.

PPJoin uses the NCs to check the computation cost to

balance workload. The custom partitioner starts to distribute

tid with higher NC, and allocates groups of records to the

partition with the lowest workload. The workload of each par-

tition is calculated as the sum of NC of tids already allocated

in the partition. The pseudo-algorithm used to distribute blocks

is shown in Algorithm 2.

Algorithm 2: Blocks assignments

input : blocks list of blocks with blockID and NC, sorted
by NC

input : n number of partitions
output: blockAssignments
blockAssignments← {}
partitionsWorkloads← list[n]
for p ∈ partitionsWorkloads do

p← 0
end
for b ∈ blocks do

pIndex←
getIndexWithMinV alue(partitionsWorkloads)

partitionsWorkloads[pIndex]←
partitionsWorkloads[pIndex] + bNC

blockAssignments←
blockAssignments ∪ (pIndex, bblockID)

end

C. TTJoin

PPJoin exploits prefix-filter and

position-filter. We propose a new filter method

based on prefix-filter. prefix-filter is based

on the analysis of the prefix, the size of the prefix is given

by Equation 3.

PrefixSize = |x| − �t · |x|�+ 1 (3)

The equation 3 is employed during the blocking phase, since

it is not possible to know a priori the cardinality of y. However,

when candidate pairs are generated by the prefix-filter,

it is possible to use a more restrictive formula to calculate the

prefix.
Two Token Filter is designed to be more restrictive, and it is

defined starting from the relation between Overlap and Jaccard

similarities, demonstrated in [8]. This relation is shown in

Equation 4.

J(x, y) ≥ t⇐⇒ O(x, y) ≥ α =
1

1 + t
· (|x|+ |y|) (4)

In the Equation 4: x and y are two ordered sets, J(x, y) is

their Jaccard similarity; O(x, y) is their overlap similarity; t
and α are the thresholds of Jaccard and Overlap similarity; |x|
and |y| are the sizes of sets x and y. α represents the number

of minimum overlap to have the condition J(x, y) ≥ t.
DT (Different Token) is an element in x and not contained

in y. MaxNDT (x) is the maximum number of DT that can

be present in x without violate the constraint J(x, y) ≥ t.
MaxNDT (x) can be calculated as:

|DT (x)| = |x| − |x ∩ y| ⇒ |x ∩ y| = |x| − |DT (x)|
Since:

O(x, y) = |x ∩ y| ≥ α⇒ |x| − |DT (x)| ≥ α

⇒MaxNDT (x) = |x| − α (5)

The same reasoning can be applied to the elements of y.

MaxNDT (y) = |y| − α (6)

If the constraint J(x, y) ≥ t is verified, in a subset of x with

MaxNDT (x)+2 elements, it is possible to deduce that there

are at least two elements which have to be present in y. Thus,

with x and y ordered, the firsts MaxNDT (x) + 2 elements

from x (this set of elements is denoted with TTPrefix(x))
and the firsts MaxNDT (y) + 2 elements from y (this set of

elements is denoted with TTPrefix(y)) must have at least 2

elements in common.

|TTPrefix(x)| = MaxNDT (x) + 2 = |x| − α+ 2 (7)

|TTPrefix(y)| = MaxNDT (y) + 2 = |y| − α+ 2 (8)

To demonstrate this, considering |x| ≥ |y| and

|TTPrefix(x) ∩ TTPrefix(y)| < 2, thus:

|TTPrefix(x) ∩ TTPrefix(y)| = 1 (9)

To satisfy O(x, y) ≥ α:

|x ∩ y| ≥ α⇒
|(x− TTPrefix(x)) ∩ (y)|+ |TTPrefix(x) ∩ y| ≥ α⇒

|(x− TTPrefix(x)) ∩ (y)|+
|TTPrefix(x) ∩ y − TTPrefix(y)|+
|TTPrefix(x) ∩ TTPrefix(y)| ≥ α

847

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



Now, applying the condition of Equation 9 will results:

|(x− TTPrefix(x)) ∩ (y)|+
|TTPrefix(x) ∩ y − TTPrefix(y)| ≥ α− 1

ro (remain overlaps) is the left part of above equation:

ro = |(x− TTPrefix(x)) ∩ (y)|+
|TTPrefix(x) ∩ y − TTPrefix(y)|

Hence, tokens in x and y are sorted and |x| ≥ |y|, it is possible

to prove that ro cannot be > max(|(x−TTPrefix(x))|, |y−
TTPrefix(y)|), since, |x| ≥ |y|, this means that with the

maximum value of ro will be |(x− TTPrefix(x))|, thus, to

satisfy O(x, y) ≥ α:

|(x− TTPrefix(x))| ≥ α− 1⇒
|x| − |TTPrefix(x)| ≥ α− 1

Since:

|TTPrefix(x)| = |x| − α+ 2⇒
|x| − (|x| − α+ 2) ≥ α− 1

This demonstrate that it is impossible to satisfy O(x, y) ≥ α
if |TTPrefix(x) ∩ TTPrefix(y)| < 2. Thus, TTPrefix(x)

and TTPrefix(y) must have at least 2 elements in common to

satisfy J(x, y) ≥ t.
Given a candidate pair of ordered sets (x, y), Two Tokens

filter (TTF) checks TTPrefix(x) and TTPrefix(y), dis-

carding the pair if there are no at least 2 overlap elements.

This filter can be used in the reduce phase to cut down the

number of candidate pairs.

IV. EXPERIMENTS

A. Datasets

To test PPJoin and its improvements four real-world

datasets are used:

• Enron Mails is a dataset of emails which was collected

and elaborated by CALO Project (A Cognitive Assistant

that Learns and Organizes)1. The corpus contains about

500 thousands emails;

• PubMed Abstracts is a collection of abstracts of biomed-

ical publications from MEDLINE2. Contains about 14

million abstracts;

• Citations is composed by two datasets which contain data

extracted from Citeseer and DBLP. For each publication

are reported: title, authors and name of the journal in

which was published; however, the title is the only

attribute that is always available in all records. The

missing information can cause significant variation of the

similarity measure, thus we chose to keep only the title

for our tests. The RSJoin is tested with this dataset.

Table I resume the datasets characteristics; where rows is

the number of documents in the datasets, max is the maximum

1http://www.ai.sri.com/project/CALO
2https://www.nlm.nih.gov/bsd/pmresources.html

TABLE I: Datasets statistics

Dataset Rows Max Min AVG Std dev
Enron Mails 0.5 million 47064 1 141.01 253.30

PubMed Abstract 13 million 1082 1 104.20 36.49
Citations - Citeseer 1.8 million 51 1 7.67 4.35
Citations - DBLP 2.5 million 38 1 9.24 3.53

number of distinct tokens in a document, min is the minimum

number of tokens in a documents, and AVG and std are

respectively the average and the standard deviation.

Enron Mails is the smallest dataset in terms of number

of documents, however each document has 141 on aver-

age distinct token. Citations datasets have more documents,

through, these datasets have less distinct tokens, whereby, the

computation on Citations is the fastest. PubMed Abstracts

is the largest dataset, with 13 millions of documents. Since,

PPJoin cannot complete the process for the whole dataset, a

subset of PubMed Abstracts, 20% of the whole dataset, is cre-

ated to evaluate PPJoin ; this subset is named PubMed020.

B. Configuration

The evaluation was performed on a cluster where each node

owns two Intel Xeon E5-2697 v4 at 2.3GHz (36 cores overall)

and 128 Gb of RAM. As framework Apache spark 2.1.0 is

used, the code is developed in Scala 2.11.8.

C. Methods

In the experiments PPJoin and TTJoin are evaluated on

the datasets described in the previous section. Both self join

and RSJoin are tested. Enron Mails and PubMed20 datasets

are used to test self join, while the RSJoin is executed on

Citations.

The experiments are performed using Jaccard similarity as

similarity measure, however it is possible to use different simi-

larity measures (e.g. Dice, Cosine, Edit, etc.). The comparison

tests are executed first varying the threshold, and then with the

variation of number of workers nodes, from 2 to 10.

Firstly, two version of PPJoinare compared, then more

detailed tests are executed on TTJoin , evaluating it on the

largest dataset, Pubmed Abstract. The scalability is evaluated

measuring its execution time from 10 to 20 worker nodes, and

also varying the threshold. Furthermore, TTJoin is tested

with subsets of PubMed Abstract, these datasets are generated

by sampling PubMed Abstract by 10, 20 and 50 percent of its

original size.

D. Results

Figures 3, 4 and 5 reports the results obtained among the

different algorithms. These tests compare the scale-out of

examined algorithms and the behaviors of algorithms with

variance of threshold. The scalability on small datasets, like

Citations, is limited since the workload is small, and the

distribution on high number of worker nodes does not increase

the performance. While, the scalability is enhanced on larger

datasets (Enron Mails and PubMed20).

Varying the threshold it is possible to observe how the

workload is reduced with the increasing of the threshold. This

848

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



(a) Threshold variation

(b) Number of nodes scalability

Fig. 3: Enron Mails execution time

happens because the size of the prefixes is increased with

the lowering of the threshold, causing in an increasing of the

workload.

a) PPJoin comparison: PPJoin as implemented in [11]

is compared with our version that avoids the duplicate gener-

ation PPADJoin. The results show that PPADJoin takes

advantage when the number of candidate pairs is higher.

On PubMed2020 the number of candidate pairs is small

with respect to other datasets, for this reason on this dataset

the performance of PPJoin and PPADJoin are similar.

On the other datasets PPADJoinoutperforms the standard

PPJoin implementation.

b) TTJoin vs PPJoin: Our new join algorithm TTJoinis

more efficient with respect the PPJoinand PPADJoin, since

the use of the TTFilter let to prune more pairs, generating less

candidate pairs. Furthermore, as shown in Figure 6 TTJoin is

able to process the whole PubMed Abstract dataset, that cannot

be processed with PPJoin.

c) TTJoin - scalability: The scalability of TTJoin is

evaluated on the whole PubMed Abstracts dataset. Figure 6a

shows the scalability of TTJoin varying the threshold on 10,

(a) Threshold variation

(b) Number of nodes scalability

Fig. 4: PubMed20 execution time

15 and 20 worker nodes. With a higher threshold the execution

times are very close to each other, this because the workload

is very reduced, since the length of the prefix depends from

the threshold. With a lower threshold there is a significative

improvements at the increasing of the number of workers in

term of execution time, since the data to process are much

more.

The last evaluation is on the performance of TTJoin vary-

ing the datasets size. This evaluation is performed with

PubMed10, PubMed20, PubMed50 and the whole PubMed

abstract. The workload increases when increasing the volume

of dataset. The results of tests are shown in Figure 6b. With

the increase of volume of data, the performance with high

number of worker nodes are better, this is due to limit of

resources when the number of worker nodes is low. Thus,

with a small dataset the performances are similar, while with

a larger dataset, the performances with more worker nodes are

higher.

From these experiments it is possible to conclude that

TTJoin is able to scale almost linearly with the increasing

849

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



(a) Threshold variation

(b) Number of nodes scalability

Fig. 5: Citations execution time

of the worker nodes.

V. CONCLUSION AND FUTURE WORKS

In this work improvements are proposed to increase the

performance of the state-of-the-art of set similarity join. We

started from the study and implementation of PPJoin, one

of the most popular and cited set similarity join algorithm in

literature.

Apache Spark is employed to implement PPJoin, the

scale-out of this implementation is tested by using four

real world datasets and compared with proposed solutions

PPADJoin and TTJoin.

Experiments show the performance improvement of

PPJoin without generation of duplicates. Furthermore,

TTJoin outperforms PPJoin in all experiments. This

proves the effectiveness of TTF as filter for set similarity join.

We also demonstrated the scalability of TTJoin with the

variation of the volume of dataset and the numbers of work

nodes.

(a) Threshold variation

(b) Number of nodes scalability

Fig. 6: TTJoin scalability

In conclusion, our work put forward new methods to

improve set similarity join, with the hope it can contribute

researches on similarity join optimization.

REFERENCES

[1] G. Simonini and S. Zhu, “Big data exploration with faceted browsing,” in
High Performance Computing & Simulation (HPCS), 2015 International
Conference on. IEEE, 2015, pp. 541–544.

[2] S. Bergamaschi, D. Ferrari, F. Guerra, G. Simonini, and Y. Velegrakis,
“Providing insight into data source topics,” Journal on Data Semantics,
vol. 5, no. 4, pp. 211–228, 2016.

[3] G. Simonini, S. Bergamaschi, and H. Jagadish, “Blast: a loosely schema-
aware meta-blocking approach for entity resolution,” Proceedings of the
VLDB Endowment, vol. 9, no. 12, pp. 1173–1184, 2016.

[4] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi, “Schema-
agnostic Progressive Entity Resolution.” ICDE ’16, 2016.

[5] F. Benedetti, D. Beneventano, S. Bergamaschi, and G. Simonini,
“Computing inter-document similarity with context semantic analysis,”
Information Systems, 2018.

[6] S. Bergamaschi, F. Guerra, and G. Simonini, “Keyword search over re-
lational databases: Issues, approaches and open challenges,” in Bridging
Between Information Retrieval and Databases. Springer, 2014, pp.
54–73.

[7] F. Guerra, G. Simonini, and M. Vincini, “Supporting image search with
tag clouds: a preliminary approach,” Advances in Multimedia, vol. 2015,
p. 4, 2015.

850

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 



[8] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient similarity
joins for near-duplicate detection,” ACM Transactions on Database
Systems (TODS), vol. 36, no. 3, pp. 1–41, 2011.

[9] W. Mann, N. Augsten, and P. Bouros, “An empirical evaluation of set
similarity join techniques,” Proceedings of the Vldb Endowment, vol. 9,
no. 9, pp. 636–647, 2016.

[10] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in International Conference on Data
Engineering, 2006, pp. 5–5.

[11] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity
joins using mapreduce,” in ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, Usa, June,
2010, pp. 495–506.

[12] P. Bouros, G. Shen, and N. Mamoulis, Spatio-textual similarity joins.
VLDB Endowment, 2013.

[13] L. A. Ribeiro and T. Hrder, “Generalizing prefix filtering to improve set
similarity joins ,” Information Systems, vol. 36, no. 1, pp. 62–78, 2011.

[14] W. Mann and N. Augsten, “Pel: Position-enhanced length filter for set
similarity joins.” in Grundlagen von Datenbanken, 2014, pp. 89–94.

[15] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: an
adaptive framework for similarity join and search,” in ACM SIGMOD
International Conference on Management of Data, 2012, pp. 85–96.

[16] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[18] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the titans: Mapreduce vs. spark for large scale data
analytics,” Proceedings of the VLDB Endowment, vol. 8, no. 13, pp.
2110–2121, 2015.

851

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:57:14 UTC from IEEE Xplore.  Restrictions apply. 


