
SOPJ: A Scalable Online Provenance Join for Data
Integration

Song Zhu, Giuseppe Fiameni, Giovanni Simonini and Sonia Bergamaschi
Department of Engineering Enzo Ferrari
Università di Modena e Reggio Emilia

Italy
Email: firstname.lastname@unimore.it

Abstract—Data integration is a technique used to combine
different sources of data together to provide an unified view
among them.

MOMIS[1] is an open-source data integration framework
developed by the DBGroup1. The goal of our work is to make
MOMIS be able to scale-out as the input data sources increase
without introducing noticeable performance penalty. In partic-
ular, we present a full outer join method capable to efficiently
integrate multiple sources at the same time by using data streams
and provenance information. To evaluate the scalability of this
innovative approach, we developed a join engine employing a
distributed data processing framework. Our solution is able to
process input data sources in the form of continuous stream,
execute the join operation on-the-fly and produce outputs as soon
as they are generated. In this way, the join can return partial
results before the input streams have been completely received or
processed optimizing the entire execution. Encouraging results of
adopting the proposed approach on real datasets closes the paper.

Keywords—Stream processing; full outer join; distributed pro-
cess

I. INTRODUCTION

With the advent of new technology, instruments, computing
systems and sensors, data is generated at an incredible speed
and stored in various forms. In order to create an unified view
among collected data sets and be able to extract new insights,
a new approach to integrate the various data sources together
needs to be developed. MOMIS is an open-source Data
Integration framework that aims at addressing this integration
challenge but which requires further improvements to scale-
out as data sources increase too rapidly. In this paper we
present a new scalable join engine that using data streams
is able to elaborate a huge amount of data simultaneously
without decreasing execution performance. Many frameworks,
such as Spark Stream2 and Apache Storm3, already
offer similar approaches but none of them can be considered
complete or exhaustive enough to this purpose.

A. Background

Performing data aggregation by combining different data
sources together is a commonly used operation. In relational
DBMS, this operation is called join. Combining the records of

1http://www.dbgroup.unimore.it/
2http://spark.apache.org/streaming
3http://storm.apache.org

two or more data sources, namely tables, it generates output
value bags by matching tuples on the basis of pivotal attributes,
i.e. keys. In an inner join, if a tuple has no correspondences
on the other sources, it will not end up into the final result.
Conversely, the outer join preserves all the attributes despite
the existence of any crossmatch[2].

Definition 1:
Cartesian Product: Given 2 relationships with schemes R(X)

and S(Y), the result of Cartesian Product is a relation with
schema R.X U R.Y and set of tuples:

r × s = {t|t = tRtS : tR ∈ r ∧ tS ∈ s} (1)

Definition 2:
Theta-Join: Given 2 relationships with schemes R(X) and

S(Y) and a predicate P built by a boolean expression of join
condition between R and S:

r ./P s = σP (r × s) (2)

Equi-Join are special join where predicates are only equality
predicates.

Definition 3:
Outer join: Given two relations R(X) and S(Y). Define j to

be the inner join with predicate P.

j = r ./P s (3)

Define R’ and S’ as follows:

r′ = r − πX(j) (4)

s′ = s− πY (j) (5)

R’ and S’ are unmatched tuples or dangling tuples of R and
S, respectively, with respect to the join. The full outer join
with predicate P is defined as:

r =./=P s = r ./P sU(r′ × nY)U(nX × s′) (6)

Where nX and nY are null values for attributes X and Y
respectively.

2017 International Conference on High Performance Computing & Simulation

978-1-5386-3250-5/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCS.2017.23

79

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

B. Data Integration Join

While integrating different data sources, the full-outer-join
is more appropriate than the inner-join to merge data as
it preserves all partial results. Therefore we are focused to
improve the scalability and efficiency of a full outer equi-join.

To reduce the number of stages during an outer join op-
eration, our approach does not use a binary operator. It is
able to accept records originating from many data sources and
join them within one single stage. To this purpose, we use
the provenance information to combine records of different
sources.

C. Our Contribution

Within shared-nothing systems, the most common comput-
ing platforms for distributed computing[3], the join operation
hardly scales due to the high number of network communica-
tions which are needed to aggregate the keys of the different
sources4. Hence, the bandwidth of such systems is typical
bottleneck for inter-node communications.

As a consequence, minimizing the volume and the fre-
quency of data exchanges across the network becomes one
of the most important aspects to consider while executing
distributed join operations. Afrati F. et al[4] underlined the
importance of communication cost reduction in a Map-Reduce
context, and the same consideration can be done also in
distributed stream process.

In this paper, we present a novel approach based on data
streams. To the best of our knowledge, this approach is the
first attempt to provide a full outer join operator over multiple
sources based on the minimization of data transferred over
the network. We choose a full outer multi-way join, since it
is very suitable for data integration and ETL applications.
Performance tests have been executed using the Apache
Ignite5, an open source distributed in-memory platform.

The rest of this paper is organized as follows: related works
are presented in section II. We define the problem and present
our solution in section III. Results of the empirical evaluation
of our approach are presented IV. Finally, Section V concludes
the paper.

II. RELATED WORK

The work presented in this paper reports about the imple-
mentation of a scalable join operator to solve the problem
of massive data integration. Our solution is able to consume
streams of data, thus optimizing the network traffic, and
produce results as long as data sets are joint. In literature The
join operation is widely studied.

In the distributed context, the main join
paradigms/algorithms are:
• Map Reduce Joins;
• Stream Joins;
• Online Joins.

4The keys are typically spread among data sources.
5https://apacheignite.readme.io/docs

Map Reduce Joins: Map Reduce is one of most popular
paradigms for distributed computation. Thus, there are a lot
of work to improve the join performance in this framework
[5], [4], [6], [7], [8]. However, map reduce join algorithms
have a blocking behavior, since the Map Reduce paradigm
uses a barrier to synchronize consecutive Map and Reduce
steps affecting the execution performance. Each Map task
needs to complete before the successive Reduce can start. As a
consequence, data sets of a big source must be entirely loaded
into the system before any join operation can start.

Stream Joins: The stream join merges data in the stream
paradigm, and the result of join could be used before it is
completed, there are many works and implementations on
stream joins [9], [10], [11], [12]. This join paradigm is useful
to merge sensor data, where the input data is continuous.
However, all previews cited works on stream join are windows
based, to support continues streams of data. This means, it
has the limitation of arrival time. Whereby, if a tuple arrives
out of time it will be lost. To employ windowed stream join,
we have to sort the input data sources, and the arrival time is
critical. Furthermore, the sort operation for a big data source is
expensive. Moreover no data loss can happen while integrating
data.

A remarkable contribution to stream join algorithms is that
proposed by Lin Q, Ooi B C, Wang Z, et al. [13]. They
propose join-bi-clique Model based on a bipartite graph. This
algorithm allows historical and window-based Stream Join
with any predicate, however with respect to our requirements,
it allows join only between two relations, namely sources.

Online Joins: For our purpose we require a non-blocking
and no data loss join algorithms. An implementation of
distributed online join is studied by Elseidy. In [14], authors
proposed an scalable and adaptive online join. However,
Elseidy’s algorithm does not support multiple sources neither
full outer join.

III. SOPJ APPROACH

A. Problem definition

Our first goal is to develop a Distributed Streaming Full
Outer Join able to handle a large number of different sources
whose data volume can be huge.

The proposed solution consists of a scalable join engine
providing the following characteristics:
• Full outer join: In the data integration context, all tuples

of data are required, including the no matching ones.
• Distributed: In the last decades, the distributed com-

puting paradigm is the most employed method to meet
scalability problems. The join operation is hard to scale
in this paradigm, however, we believe that the distributed
paradigm is the only solution to process the large amount
of data available nowadays.

• Streaming: Our approach offers reactive response also
at large-scale environment, this is due to our on the fly
join process, that processes data when it arrives at a join
node. In addition, stream process has a great advantage
in chain processes [15].

80

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

• Multi-way:It may also happen that many data sources
share the same keys, or can be mapped into the same
keys; in this case, a multi-way join with the same
key reduces join stages compared to binary join. This
characteristic can be interesting for data integration of
sensor data, where there are many different datasources,
sensors, and it is necessary merge them for timestamp or
geolocation attribute.

1) Distributed processing: The main strategy to improve
an application performance is to make it use multiple nodes
provided its internal tasks can be distributed.

In this context, many frameworks have been developed to
simplify the development of such distributed applications [16].

As presented before II, the main join paradigms/algorithms
are:

• Map Reduce Joins;
• Online Joins;
• Stream Joins.

For our purpose we adopt online join paradigm since we
require a non-blocking join. Our join engine receives stream
inputs from data sources and merges arrival tuples on-the-fly
and, when the result of a tuple is complete, it can be used
immediately in the next operation.

2) Stream processing: The stream-based applications is a
class of data processing workloads where streams of tuple are
pushed to the system and continuously quiered [17].

For multiple steps processes, the stream-based paradigm
can bring a fundamental advantage with respect to the batch
processing one where a succesive step starts only when all
previous ones have been completed. It becomes even more
important and necessary when input streams are continuous
and never ends [18].

For example, in a two stages join process, as shown in
figure 1, there are three relations product(cod product, name,
description, price), order product(cod order, cod product,
quantity) and order(cod order, customer), and we have to
join product with order product on cod product and to join
order and order product on cod order. We define (product
join order product) join order. This means we have two stages
of join. First stage, join between product and order product,
then the result join order. In batch process paradigm, we have
to finish the first stage before starting the second stage of join.
In a stream process, the second join process can starting before
first stage ends [19].

SOPJ is not a window-based join. Thus the arrival time is
not critical for our algorithm.

B. SOPJ concept

We implement SOPJ as a variant of hash join taking
inspiration form the Doubled Pipelined Hash Join[20].

Hash Join: In an conventional hash join the smaller relation
is stored into hash table in the build phase, and the other
relation is scanned in the probe phase to get result.

Fig. 1. Multiple join

Doubled Pipelined Hash Join: The Doubled Pipelined Hash
Join [20] is still a join with two relations, and both relations
send tuple to the join operator as fast as possible. The join
operator probes each record into the hash table of the other
relation to produce results, and stores the record into the hash
table of the current relation. This join algorithm produces
output records almost immediately and partially masks data-
sources network bottleneck consuming more memory as the
Doubled Pipelined Join stores both relations.

SOPJ: Our join has to be able to accept more then two
relations. In addition SOPJ is a full outer join. Our idea is to
store records from all datasources in a single hash table, the
join attribute is used as key, in this way, all records with the
same values in the join attribute are grouped in an single entry
of the hash table. Input message for each input record from
datasources has to be composed of three parts:

• join key - the value of join attribute.
• datasource provenance id, i.e. dpID - each datasource has

an identifier, it is used to identify datasource during join.
• data - values of the input record.

In the hash table, records from all datasources are stored
with the join key as key of hash table as explained above, the
value of hash table is a collection of dpID and data, the join
engine combines data by using the provenance key of each
record in the value. Each input record or message adds or
updates a row of the hash map. When a value of the hash table
is complete, then there is at least one record for each relation
in the join, output records are generated immediately. At the
end of record sending process, when all datasources have sent
all records, SOPJ evaluates all rows of the hash table with
incomplete values, row with a missing join key at least in one
datasource, these are dangling tuples of full outer join. SOPJ
produces output also for these dangling tuples, reporting null
values for the attributes of missing datasources.

Our idea is to use a distributed hash table. In this way, we
have the advantage of scalability and fault tolerance with the
replication of hash table in more nodes to avoid loss of data
in cases of node failure.

In principle the SOPJ algorithm is affected by the same
memory issued of the Doubled Pipelined Hash Join as the hash
table which needs to be stored can be huge. However since an
hash table can be easily distributed across multiple nodes and
access operations executed in parallel, the capability of our
join implementation to process data depends on the amount

81

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I
OUTPUT GENERATION EXAMPLE: NO OUTPUT GENERATED

”d1”, (”v11”, ”v12”)
”d3”, (”v31”, ”v34”, ”v33”)

”d1”, (”v15”, ”v14”)

TABLE II
OUTPUT GENERATION EXAMPLE: VALUE COMPLETED

”d1”, (”v11”, ”v12”)
”d3”, (”v31”, ”v34”, ”v33”)

”d1”, (”v15”, ”v14”)
”d2”, (”v21”)

of resources available. Performance can scale-out as linearly
as the number of nodes.

C. Implementation

The implementation of the SOPJ algorithm is based on the
Apache Ignite framework. It was chosen for its capability to
handle data streams and cache distributed data. At the end
of our evaluation these features resulted fundamental for the
implementation of the algorithm.

A distributed system usually processes the join operation in
two steps:

1) Data shipment: the input data is distributed across all
join computational nodes;

2) Local join step: Local join step: each node performs a
stand-alone join on its local portion of data.

The first step corresponds to the receiving of input record
from datasources, and the local join step is the generation of
output records. In SOPJ the two steps of the join operation,
data shipment and local join, are performed almost in parallel
reducing the computation time. Basically SOPJ does not need
to wait until the whole data shipment takes before starting to
perform local joins. However the algorithm produces results
for a join key as soon as the join key has at least one value
for each datasource. In addition, if a new value arrives for a
join key that already generated output records, new outputs
are generated for the new value. Let us consider an output
generation example: In this example we consider a single join
key ”jk5”, and we join three datasources with provenance id
”d1”, ”d2” and ”d3”. In the hash map, for the datasource ”d1”
there are two records with the value of ”jk5” and one record
for datasource ”d3” as shown in table I

When a record sent from datasource d2 with join key ”jk5”
is received, as shown in table II, output records are generated
on the fly, as shown in table III. The output record is a cartesian
product of among the values in table II grouped by their
provenance id as fellowing equation.

Output = d1× d2× d3 (7)

We can do cartesian product since their have the same join
key.

If an additional record with join key ”jk5” is received for
example from datasource d3, as shown in table IV, additional

TABLE III
OUTPUT GENERATION EXAMPLE: FIRST OUTPUTS

jk5 v11 v12 v21 v31 v34 v33
jk5 v15 v14 v21 v31 v34 v33

TABLE IV
OUTPUT GENERATION EXAMPLE: AN NEW INPUT FROM DATASOURCE D3

FOR JOIN KEY JK5

”d1”, (”v11”, ”v12”)
”d3”, (”v31”, ”v34”, ”v33”)

”d1”, (”v15”, ”v14”)
”d2”, (”v21”)

”d3”, (”v35”, ”v36”, ”v38”)

output are generated, as shown in table V. The new output is
generated as fellowing equation.

NewOutput = d1× d2×NewRecord d3 (8)

Where NewRecord d3 is the only the last received record
of d3

IV. TESTS

In this section, we illustrate a performance evaluation of our
join algorithm. To evaluate SOPJ we used Apache spark’s
DataFrame and Spark SQL6. We know that the two contexts
are completely different, one is a batch process and the other
is a stream process. However, Spark is the most known
and appreciated distributed framework by the open source
community. Thus, we believe, it is appropriate to use Spark
as Golden Standard for distributed applications comparison.

A. Hardware

The performance evaluation was done by using Pico7, a
computing system made available by Cineca8. PICO is made
of an Intel NeXtScale server, designed to optimize density and
performance, driving a large data repository shared among all
the HPC systems in CINECA. The storage area is composed
of high throughput disks (based on GSS technology) for a total
amount of about 4 PB, connected with a large capacity tape
library for a total actual amount of 12 PByte (expandable to 16
PByte). The storage area is accessible from all HPC systems
in CINECA (under the $DATA name) an is organized on the
basis of projects. Each active project on any HPC system has a
corresponding entry on $DATA. The storage area is a ”multi-
level” memory. Depending on the defined policy, data migrate
automatically on the tape, in a transparent way with respect
to the user.

6http://spark.apache.org/sql/
7http://www.hpc.cineca.it/hardware/pico
8http://www.cineca.it/en

TABLE V
OUTPUT GENERATION EXAMPLE: ADDITIONAL OUTPUTS FOR NEW INPUT

jk5 v11 v12 v21 v35 v36 v38
jk5 v15 v14 v21 v35 v36 v38

82

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Cineca’s Pico nodes

Fig. 3. Input partitions

Pico has 66 compute nodes, as show in Figure 2, and we
employ them to create our computation cluster with Ignite.
In this way, we can easily test SOPJ with different number of
computation node.

B. Input data

To test the join algorithm employed the flights9 dataset of
year 2008 with over 7 million of records, we split its columns
into 3 data sources, in this way we obtained a 3 way join.

The input data are stored to disc as csv files. The initial
dataset is split to 3 datasets (flight1, flight2 and flight3) with
a common join id and the partitioned columns, as to consider
them 3 data sources; then we random split each data source
to csv files, each csv file contains 10000 rows, as shown in
figure 3.

We implement a distributed job to read each file and send
them as streaming message to SOPJ. We implement SOPJ to

9http://stat-computing.org/dataexpo/2009/the-data.html

receive multiple stream input from each datasource, in this
way also each datasource can be distributed on more nodes
and sends its data on multiple streams.

Tests are made by using the strong scaling paradigm to
measure the speedup of the join engine on distributed envi-
ronment. We used the same configuration, the only difference
is the number of computation nodes.

C. Spark SQL

To compare SOPJ with Spark SQL, we created a Scala
script with Spark SQL API.

The script loads flight1, flight2 and flight3 datasets into 3
Spark’s DataFrames. Then, the script queries on Dataframes
are performed by using Spark SQL full outer join.

select
coalesce(f1.id,f2.id,f3.id) as newid,

*
from flight_1 f1
full outer join flight_2 f2
on f1.id = f2.id

full outer join flight_3 f3
on coalesce(f1.id, f2.id) = f3.id

D. Results

In this experiment, the focus is on the speedup of the
algorithm with different number of nodes in the network.
Results are shown in table VI and figure 4.

The Spark’s chart demonstrates by trial, the high difficulty
to scale the join operation on distributed environments. The
trend of Spark is practically constant with increasing number
of nodes. The query plans of Spark full outer join executions
are always the same with a different number of nodes. Looking
at the query plan, Spark performs hash partitioning for the
data shipment phase, and sort merge join on nodes for local
join step.

83

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
JOIN PERFORMANCE

Number of nodes SOPJ [ms] Spark SQL [ms]
3 116337 74541
5 83652 62485
8 58520 64256

10 54377 64209
12 50643 58141
15 50527 55821

Fig. 4. Join performance

The performance of SOPJ is similar to Spark join perfor-
mance. However, SOPJ performs worse on few nodes, and
scale better with higher number of nodes. Differences of
performance among 3, 5 and 8 nodes are significant, while
differences of performance with more than 8 nodes are small.

To investigate deeper on performances of SOPJ, we mea-
sured the resource usage of join execution. The left part of
figure 5 shows the average of CPU usage, and the total TCP
traffic of all nodes when 5 nodes are used. The right part of
figure 5 shows the same measures when 10 nodes are used.
The trends of the same type of charts are similar. All 4 charts
are subdivided in 2 parts, the first part executions the system is
busy, the CPU usage is almost 100% and also the networks.

Fig. 5. Resources consumption chart

Fig. 6. tuple sending statics

When networks activities stops also the CPU activity drop
down. The main networks activities are the data shipment, and
during the data shipment phase, the local join step is performed
at the same time. If we suppose the local join step consumes
same CPU resources in both part of executions. The main
activities of CPU in the first part of execution is due to data
preparation for data shipment. The local join consumes few
CPU resources, since it likes other hash joins, it is a memory
intensive operation [21].

The networks activities with 10 nodes execution is more
intense and short then with 5 nodes, this is due to more
resources (CPU and bandwidth) available for execution, and
increase the scalability of join engine.

Therefore, data shipment is the key aspect to consider for
the join optimization, hence another issue to be evaluate is the
speed to send tuples. In figure 6 the sending statistics of tuples
on 1 node by the join execution with 10 nodes is shown. From
this chart, we observed the time to send 1 tuple around 14µS,
and we can calculate the time for 1 node to send its tuples
with the following operation.

ST =MeanTime ∗Ntuples ∗Nsources/Nnodes (9)

For the 10 nodes execution, the time necessary to send all
tuples is around 29 seconds, and it coincides with the networks
activities shown in bottom right part of figure 5.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach (SOPJ) to execute a
stream-based multi-way full-outer join over distributed data
sources. The measured performance of our implementation is
comparable with a batch join using Apache Spark provided
the local capacity of the node memory is large enough to
store the entire data set. Despite some inefficiencies while
using small data sets, our approach looks promising and thus
deserves further investigations. As next step, we will imple-
ment the SOPJ algorithm by using the Spark Stream API
and compare the performance against Apache Ignite.
The comparison is worth the implementation effort as the
philosophy of manipulating data streams standing behind the
two frameworks is completely different.

During our evaluation, we observed that one of the key
aspects of the join process optimization is the the data ship-
ment. Reducing the time to transfer the records across the

84

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

network gives a significant increase to the overall performance.
Moreover, our algorithm performs well when the bandwidth
available on the system represents a bottleneck as data is
processed on the fly optimizing the use of resources.

The data skew is an important issue in distributed join,
however it is hard to manage in stream context, since the
join key distribution is unknown a priori. In [14], an adaptive
algorithm is proposed, nevertheless, this solution needs addi-
tional movement of data through the network and an accurate
knowledge about resources of the system. We will evaluate in
future the trade off about an adaptive algorithm for SOPJ.

The applications for our join engine are numerous. The main
context of application is data integration system, like MOMIS
system [1], as it is necessary to return tuples from all integrated
data sources, including also all dangling tuples. Moreover,
when the number of data sources to be integrated increases, the
multi-way join feature of our algorithm outperforms the binary
join approach of other frameworks such as Spark. Another
application we are investigating is in the sensor monitor
context, within represents (along with data integration) the
main focus of our future work.

VI. ACKNOWLEDGMENTS

We would also like to show our gratitude to Cineca for
supporting us for tests and making available Pico for our test
environment.

REFERENCES

[1] D. Beneventano and S. Bergamaschi, “The momis methodology for
integrating heterogeneous data sources,” in Building the Information
Society. Springer, 2004, pp. 19–24.

[2] E. F. Codd, “Extending the database relational model to capture more
meaning,” ACM Transactions on Database Systems (TODS), vol. 4, pp.
397–434, 1979.

[3] M. Hogan, “Shared-disk vs. shared nothing, comparing architectures for
clustered databases,” URL http://www. scaledb. com/pdfs/WP SDvSN.
pdf.(Zitiert auf Seite 33), 2012.

[4] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce
environment,” 2010, pp. 99–110.

[5] H. C. Yang, A. Dasdan, R. L. Hsiao, and D. S. Parker, “Map-reduce-
merge: simplified relational data processing on large clusters,” in ACM
SIGMOD International Conference on Management of Data, 2007, pp.
1029–1040.

[6] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A comparison of join algorithms for log processing in mapreduce,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 975–986.

[7] C. Zhang, J. Li, and L. Wu, “Optimizing theta-joins in a mapreduce
environment,” International Journal of Database Theory & Application,
vol. 6, 2013.

[8] F. Afrati, N. Stasinopoulos, J. D. Ullman, and A. Vassilakopoulos,
“Sharesskew: An algorithm to handle skew for joins in mapreduce,”
Computer Science, 2015.

[9] Y. Zhou, Y. Yan, F. Yu, and A. Zhou, PMJoin: Optimizing Distributed
Multi-way Stream Joins by Stream Partitioning. Springer Berlin
Heidelberg, 2006.

[10] B. S. Lee and T. M. Tran, “Distributed adaptive windowed stream
join processing,” International Journal of Distributed Systems and
Technologies, vol. 2, no. 2, pp. 59–81, 2011.

[11] P. Roy, J. Teubner, and R. Gemulla, “Low-latency handshake join,”
Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 709–720, 2014.

[12] V. Gulisano, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas,
“Scalejoin: A deterministic, disjoint-parallel and skew-resilient stream
join,” in IEEE International Conference on Big Data, 2015, pp. 144–
153.

[13] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu, “Scalable distributed stream
join processing,” pp. 811–825, 2015.

[14] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch, “Scalable and
adaptive online joins,” Proceedings of the VLDB Endowment, vol. 7,
no. 6, pp. 441–452, 2014.

[15] S. D. Viglas, J. F. Naughton, and J. Burger, “Maximizing the output
rate of multi-way join queries over streaming information sources,” in
Proceedings of the 29th international conference on Very large data
bases-Volume 29. VLDB Endowment, 2003, pp. 285–296.

[16] O.-C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez, “Spark versus
flink: Understanding performance in big data analytics frameworks,”
in Cluster 2016-The IEEE 2016 International Conference on Cluster
Computing, 2016.

[17] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik, “High-availability algorithms for distributed stream
processing,” in 21st International Conference on Data Engineering
(ICDE’05). IEEE, 2005, pp. 779–790.

[18] A. Riabov and Z. Liu, “Planning for stream processing systems,”
in Proceedings of the National Conference on Artificial Intelligence,
vol. 20. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2005, p. 1205.

[19] B. Liu and E. A. Rundensteiner, “Revisiting pipelined parallelism in
multi-join query processing,” in Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment, 2005, pp.
829–840.

[20] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld, “An
adaptive query execution system for data integration,” in ACM SIGMOD
Record, vol. 28, no. 2. ACM, 1999, pp. 299–310.

[21] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu, “Main-memory
hash joins on modern processor architectures,” IEEE Transactions on
Knowledge & Data Engineering, vol. 27, no. 7, pp. 1754–1766, 2015.

85

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 12,2022 at 09:57:13 UTC from IEEE Xplore. Restrictions apply.

