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Abstract—Entity Resolution (ER) is the task of finding entity profiles that correspond to the same real-world entity. Progressive ER

aims to efficiently resolve large datasets when limited time and/or computational resources are available. In practice, its goal is to

provide the best possible partial solution by approximating the optimal comparison order of the entity profiles. So far, Progressive ER

has only been examined in the context of structured (relational) data sources, as the existing methods rely on schema knowledge to

save unnecessary comparisons: they restrict their search space to similar entities with the help of schema-based blocking keys (i.e.,

signatures that represent the entity profiles). As a result, these solutions are not applicable in Big Data integration applications, which

involve large and heterogeneous datasets, such as relational and RDF databases, JSON files, Web corpus etc. To cover this gap, we

propose a family of schema-agnostic Progressive ER methods, which do not require schema information, thus applying to

heterogeneous data sources of any schema variety. First, we introduce two na€ıve schema-agnostic methods, showing that

straightforward solutions exhibit a poor performance that does not scale well to large volumes of data. Then, we propose four different

advanced methods. Through an extensive experimental evaluation over 7 real-world, established datasets, we show that all the

advanced methods outperform to a significant extent both the na€ıve and the state-of-the-art schema-based ones. We also investigate

the relative performance of the advanced methods, providing guidelines on the method selection.

Index Terms—Schema-agnostic entity resolution, pay-as-you-go entity resolution, similarity-based progressive methods,

equality-based progressive methods, data cleaning

Ç

1 INTRODUCTION

WHEN dealingwith heterogeneous data, real-world enti-
ties may have different representations; for instance,

they can be records in a relational database, sets of RDF
triples, JSON objects, text snippets in a web corpus, etc. We
call entity profile (or simply profile) each representation of a
real-world entity in data sources. The task of identifying dif-
ferent profiles that refer to the same real-world entity is
called Entity Resolution (ER) and constitutes a critical pro-
cess that hasmany applications in areas such as Data Integra-
tion, Social Networks, and LinkedData [1], [2], [3].

ER can be distinguished into two broad categories [4],
[5]: (i) Off-line or Batch ER, which aims to provide a
complete solution, after all processing is terminated, and
(ii) On-line or Progressive ER, which aims to provide the
best possible partial solution, when the response time, or
the available computational resources are limited. The
latter is driven by modern pay-as-you-go applications that
do not require the complete solution to produce useful
results.

Progressive ER is becoming increasingly important [4], [5],
[6], as the number of data sources and the amount of available
data multiply. For example, the number of high-quality
HTML tables on theWeb is in the hundreds of millions, while
the Google dataset search system alone has indexed �26 bil-
lion datasets [6]. This huge volume of data can only be
resolved in a pay-as-you-go fashion, especially for applica-
tions with strict time requirements, e.g., the catalog update in
large online retailers that is carried out every few hours.1

Most importantly, Web data abound in highly diverse, multi-
lingual, noisy and incomplete schemata to such an extent that
it is practically impossible to unify them under a global
schema [6]. Inevitably, this unprecedented variety renders
schema-based progressive methods inapplicable toWeb data.
For these reasons, we propose novel, schema-agnostic
Progressive ER methods that go beyond the current state-of-
the-art approaches in all respects—we outperform them sig-
nificantly evenwhen reliable schema information is available.

Progressive Methods. A core characteristic of the existing
methods for Progressive ER is that they rely on blocking in
order to scale to large datasets [4], [5]. Blocking is a typical
pre-processing step for Batch ER that aims to index together
likely-to-match profiles into buckets (called blocks), according
to an indexing criterion (called blocking key). Thus, compari-
sons are limited to pairs of profiles that co-occur in at least
one block, avoiding the quadratic complexity of the na€ıve
ER solution, which compares every profile with all others.
In this way, progressive methods generate on-line the most
promising pairs of profiles to be compared by amatch function,
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i.e., a (usually) binary function that decides whether two
given profiles arematching, or not.

In fact, progressive methods use blocking to generate on-
line pairs of profiles in decreasing order of matching likeli-
hood. So far, however, they have been exclusively combined
with schema-based blocking [4], [5],which is specifically crafted
for structured (relational) data. That is, they rely on schema
knowledge in order to build blocks of low noise and high dis-
criminativeness, assuming implicitly that all input records
abide by a schemawith attributes of known quality.

Limitations of Existing Approaches. The existing progres-
sive methods suffer from the following major drawbacks:

1) In practice, their fundamental assumption that schema
is a-priori known holds for a small portion of the data
we would like to handle. For instance, Web data typi-
cally comprises large, semi-structured, heterogeneous
entities that manifest two main challenges of Big Data
[1], [2]: (i) Volume, as they involve millions of entities
that are described by billions of statements, and (ii)
Variety, since their descriptions entail thousands of dif-
ferent attribute names. More generally, in a Big Data
integration scenario, schema-alignment is too expen-
sive and time consuming when multiple heteroge-
neous data sources are involved [2], [6], thus yielding a
prohibitively high cost for pay-as-you-go applications.

2) Even when the schema assumption holds, there is
plenty of room for improving the performance of exist-
ing schema-based progressive methods. We demon-
strate this in Fig. 1 over four established, real-world
anddiverse datasets: the state-of-the-art schema-based
method, Progressive Sorted Neighborhood (PSN) [4],
[5], finds only �60 and �85 percent of all matches for
Cora and US Census, respectively, after executing 10
times the number of comparisons required by the opti-
mal algorithm to identify 100 percent of the matches
(i.e., 1 comparison per pair of duplicates). For the rest
of the datasets, the performance is also far from opti-
mal: for Restaurant, PSN identifies almost all
matches only after performing 2 orders of magnitude
more comparisons than the optimal algorithm, while
for Cddb, it detects less than 80 percent of all matches
with the same (excessive) number of comparisons.

Our Contributions. We propose novel and unsupervised
methods for Progressive ER that inherently address the
Variety of BigData: they operate in a schema-agnostic fashion,
which overrides the need to search for and identify highly
discriminative attributes, rendering schema knowledge
unnecessary. Our methods are also more effective in address-
ing the Volume of BigData, since they identifymatches earlier
than the top-performing schema-basedmethod. They actually

go beyond the state-of-the-art in Progressive ER by introduc-
ing and exploiting redundancy, i.e., by associating every profile
with multiple blocking keys. Instead, existing schema-based
progressive methods typically rely on highly discriminative
attributes, which yield redundancy-free keys such that two pro-
files appear together in atmost one block.

More specifically, our redundancy-basedmethods rely on
two principles. The first one is called similarity principle,
as it assumes that any two matching profiles have blocking
keys that are closer in alphabetical order than those of non-
matching ones. The second one is called equality principle,
since it assumes that the matching likelihood of any two pro-
files is proportional to the number of blocks they share. Both
principles have been successfully applied in Batch ER [7],
but their application to the progressive context is non-trivial,
as we show empirically. For this reason, we introduce more
advancedmethods for every principle.

Through an exhaustive experimental evaluation over 7
well-known datasets, we verify that similarity-based meth-
ods excel in structured datasets, outperforming even the
state-of-the-art schema-based progressive method. These
datasets typically involve a large portion of textual informa-
tion,which provides reliablematching evidencewhen sorted
alphabetically. In contrast, our equality-based method is the
top-performer over semi-structured datasets (e.g., RDF
data); it can exploit the semantics of the URIs that abound in
this type of datasets, disregarding the useless information of
URI prefixes, which introduce high levels of noise when
sorted alphabetically.

On the whole, we make the following contributions:

� We introduce a schema-agnostic approach toProgressive

ER, which inherently addresses the Variety of Big
Data.

� We demonstrate that adapting existing schema-
based methods to schema-agnostic Progressive ER
is a non-trivial task: we introduce 2 na€ıve, schema-
agnostic methods, showing experimentally that they
fail to address the Volume issue of Big Data.

� We present 4 novel advanced, schema-agnostic pro-
gressive methods, which address both the Volume
and the Variety of Big Data. They are classified in two
categories: those based on a sorted list of profiles,
leveraging the similarity principle, and those based on
a graph of profiles, leveraging the equality principle.

� Weperform a series of experiments over 7 established,
real-world datasets, verifying experimentally the sup-
eriority of our methods over the existing schema-
based state-of-the-art method, both in terms of effec-
tiveness and time efficiency. We also investigate the
relative performance of our methods, highlighting the
top-performing ones, and providing guidelines for
method selection.

The rest of the paper is structured as follows: Section 2
discusses the main works in the literature, while Section 3
describes the background of our methods. We present
two na€ıve schema-agnostic solutions to Progressive ER in
Section 4, and four advanced ones in Sections 5 and 6. We
elaborate on our extensive experimental evaluation in
Section 7 and conclude the paper in Section 8, along with
directions for futurework.

Fig. 1. The performance of progressive sorted neighborhood on four
real-world structured datasets.
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2 RELATED WORK

Schema-Based Progressive Methods. The state-of-the-art pro-
gressive method is Progressive Sorted Neighborhood (PSN) [4],
[5]. Based on Batch Sorted Neighborhood [8], it associates
every profile with a schema-based blocking key. Then, it
produces a sorted list of profiles by ordering all blocking
keys alphabetically. Comparisons are progressively defined
through a sliding window, w, whose size is iteratively incre-
mented: initially, all profiles in consecutive positions (w=1)
are compared, starting from the top of the list; then, all pro-
files at distance w=2 are compared and so on and so forth,
until the processing is terminated.

However, the performance of PSN depends heavily on the
attribute(s) providing the schema-based blocking keys that
form the sorted list(s) of profiles. In case of low recall, the
entire process is repeated, using multiple blocking keys per
profile. As a result, PSN requires domain experts, or super-
vised learning on top of labeled data in order to achieve high
performance. In contrast, our methods are completely unsu-
pervised and schema-agnostic.

Two more schema-based methods were proposed in [5]:
Hierarchy of Record Partitions (HRP) andOrdered List of Records
(OLR). The main idea ofHRP is to build a hierarchy of blocks,
such that the matching likelihood of two profiles is propor-
tional to the level in which they appear together for the first
time: the blocks at the bottom of the hierarchy contain the pro-
files with the highest matching likelihood, and vice versa for
the top hierarchy levels. Thus, the hierarchy of blocks can be
progressively resolved, level by level, from the leaves to the
root. This approach has been improved in the literature in two
ways: (i)OLR exploits this hierarchy in order to produce a list
of records sorted by their likelihood to produce matches,
involving a lower memory consumption thanHRP at the cost
of a slightlyworse performance. (ii) A schema-based variation
of HRP is adapted to the MapReduce parallelization frame-
work for even higher efficiency in [9]. It divides every block
into a hierarchy of child blocks and uses an advanced strategy
for optimizing their parallel processing.

However, bothHRP andOLR are difficult to apply in prac-
tice. The hierarchies that lie at their core can be generated only
when the distance of two records can be naturally estimated
through a certain attribute (e.g., product price) [5]. The num-
ber of the hierarchy layers, L, has to be determined a-priori,
along with L similarity thresholds and the similarity measure
that compares attribute values. Moreover, they both exhibit a
performance inferior to PSN [5]. For these reasons, we do not
consider these twomethods any further.

Altowim et al. [10] propose a progressive joint solution in
the context of multiple datasets containing different entity
types. Similarly, in joint ER [11], the result on one dataset can
be exploited to resolve the others. As an example, let us con-
sider a joint ER on a movie dataset and on an actor dataset: dis-
covering matches among actors can help to determine
whether two movies associated to those actors are matching
too (and vice versa). Both approaches, though, are only appli-
cable to RelationalER.

Taxonomy of Progressive Methods.We now present a taxon-
omy that organizes the existing progressive methods and
those presented in the following with respect to the granu-
larity of their functionality. This results in four categories,
which generalize the hint types discussed in [5]:

1) Comparison-based methods provide a list of profile pairs
(i.e., comparisons) that are sorted in descending order
of matching likelihood (from the highest to the lowest
one). With every method call, these profile pairs are
then emitted, one at a time, following that ordered
list. This category is a generalization of the category
“sorted list of record pairs” [5] and includes the methods
PSN [4], [5], SA-PSN (see Section 4.1), LS-PSN
(see Section 5.1), andGS-PSN (see Section 5.2).

2) Block-based methods produce a list of blocks that are
sorted in descending order of the likelihood that they
include duplicates among their profiles. In every call,
all the comparisons for each block are generated, one
block at a time, following that ordered list; all compari-
sons in the same block have the same matching likeli-
hood. This is a generalization of the category “hierarchy
of record partitions” [5] and includes the homonymous
method HRP [5] together with SA-PSAB (see Section
A, which is available in the IEEE Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2018.2852763).

3) Profile-based methods provide a list of profiles that are
sorted in descending order of duplication likelihood.
Then, in every call, all comparisons of every entity
are generated, one entity at a time, following that
ordered list. This category is a generalization of the
category “ordered list of records” [5] and includes the
homonymous method OLR [5].

4) Hybrid methods combine characteristics from two or
all of the previous categories. This category includes
PBS (see Section 6.1), which involves both block- and
comparison-based characteristics, as well as PPS (see
Section 6.2), which combines comparison-based char-
acteristics with profile-based ones.

We illustrate our taxonomy in Fig. 2, available online,
where every column corresponds to a different type of granu-
larity (horizontal axis). On the vertical axis, we consider the
relation of every progressive method to schema knowledge,
with the topmost part corresponding to batchmethods. Every
arrow frommethodA tomethodBmeans thatB extendsA to
offer a new functionality. For instance, PBS and PPS are
based on the Blocking Graph, which is the core data structure
of BatchMeta-blocking [12].

Crowdsourced (or Oracle) Methods. In Crowdsourced ER [13],
humans are asked to label candidate profile pairs as either
matching or non-matching, i.e., they are asked to behave like a
binary match function. Such a function is typically assumed to
be perfect(i.e., being equivalent to an oracle [14]) and transitive
[15]. For example, given three profiles (p1, p2, p3), if the crowd
finds that p1 matcheswith p2, and p2 with p3, then the compar-
ison between p1 and p3 is not crowdsourced, but is automati-
cally deduced as amatch. Progressive crowdsourcedmethods
[14], [15], [16] exploit this transitivity tomaximize the progres-
sive recall of ER. In this work, though, we propose general
methods for Progressive ER that are independent of the
employed match function, i.e., we do not assume the match
function to be transitive, nor to be perfect—a setting that is
common for (non-crowdsourced) match functions [17]. We
exclusively consider progressive methods that define a static
processing order, without relying on the feedback of the
“match function” to dynamically re-adjust it, as in
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crowdsourced methods or the “look-ahead strategy” that lies
at the core of [4].

3 PRELIMINARIES

At the core of ER lies the notion of entity profile (or simply
profile), which constitutes a uniquely identified set of attri-
bute name-value pairs. An individual profile is denoted by
pi, with i standing for its id in a profile collection P . Two pro-
files pi; pj 2 P are called duplicates or matches (pi � pj) if
they represent the same real-world entity.

Depending on the input data, ER takes two forms [1], [2]:
(1) Clean-clean ER receives as input two duplicate-free, but
overlapping profile collections, P1 and P2, and returns as out-
put all pairs of duplicate profiles they contain, P1 \ P2. (2)
Dirty ER takes as input a single profile collection that contains
duplicates in itself and produces a set of equivalence clusters,
with each one corresponding to a distinct profile.

To scale ER to large data collections, blocking is employed
to cluster similar profiles into blocks so that it suffices to con-
sider comparisons among the profiles of every block [19].
Each profile is indexed into blocks according to one or more
criteria called blocking keys. If a blocking key depends on the
schema(ta) of the data, we call it schema-based, otherwise
schema-agnostic.

An individual block is symbolized by bi, with i corre-
sponding to its id. The size of bi (i.e., the number of profiles it
contains) is denoted by jbij and its cardinality (i.e., the number

of comparisons that it yields) by kbik. For instance, in Fig. 2b,

jbtailorj¼4 and kbtailork¼ 4
2

� �¼6. A set of blocks B is called block

collection, with jBj standing for its size (i.e., total number of

blocks) and kBk for its aggregate cardinality (i.e., the total

number of comparisons entailed by B): kBk=Pbi2B kbik. The
set of blocks associated with a specific profile pi is denoted

by Bi, and the average number of profiles per block by jbj=
P

b2B jbj=jBj. The comparison between profiles pi and pj is

symbolized by cij.

3.1 Progressive ER

In Batch ER, the profile comparisons entailed in block col-
lection B are executed without a specific order. Let To be the
overall time required for performing Batch ER on B. Based
on To, Progressive ER is formally defined by two require-
ments [4], [5]:

� Improved Early Quality. If both Progressive and Batch
ER are applied to B and terminated at the same time

t�To, then the former should detect significantly
morematches than the latter.

� Same Eventual Quality. The result produced at time To

by Progressive and Batch ER should be identical.
Even though progressive methods rarely run for so a
long time as To, this requirement ensures their cor-
rectness, verifying that they yield the exact same out-
come as batch methods.

In the following, we break the functionality of progres-
sive methods into two phases:

1) The initialization phase takes as input the profiles to
be resolved, builds the data structures needed for
their processing, and processes them to produce the
overall best comparison.

2) The emission phase returns the next best comparison
from a list of candidates that are ranked in non-
increasing order of matching likelihood. In other
words, it identifies the remaining pair of profiles that
has the highest matching likelihood.

By definition, the initialization phase is activated just
once, while the emission phase is repeated whenever a new
comparison is requested for processing.

3.2 Core Data Structures

We now describe two fundamental data structures for our
progressive methods: the Blocking Graph and theNeighbor List.
Every method discussed in the following has at its core either
the former or the latter. Note that both data structures are
known from the literature, sometimes with different names
(e.g., theNeighbor List is called sorted list of records in [5]).

Blocking Graph—This data structure lies at the core of
BatchMeta-blocking [1], [2], [12], [20], which aims at restruc-
turing an existing block collection B into a new one B0 that
has similar recall, but significantly higher precision than B.
Meta-blocking relies on the assumption that the matching
likelihood of any two profiles is analogous to their degree of
co-occurrence in a block collection. This means that B has to
be generated by a blocking method that yields redundancy-
positive blocks, where the similarity of two profiles is propor-
tional to the number of blocks they share.

Based on redundancy, which is common for schema-
agnostic blocking methods [12], Meta-blocking represents the
block collection as a blocking graph. This is an undirected
weighted graph GBðVB;EBÞ, where VB is the set of nodes, and
EB is the set of weighted edges. Every node ni 2 VB repre-
sents a profile pi 2 P , while every edge ei;j represents a com-
parison ci;j 2 B � P � P . A schema-agnostic weighting

Fig. 2. (a) A set of profiles P that is extracted from a data lake with a variety of data formats: structured/relational data (p1, p4), semi-structured/RDF
data (p2, p3) and unstructured/free-text data (p5, p6). Note that p1�p2�p3 and p4�p5. (b) The block collection B derived from P by applying token
blocking [18] to its profiles. (c) The blocking graph derived from B, with every edge representing a profile comparison that is weighted by the ARCS
function. (d) The sorted list of attribute value tokens that appear in the profiles of P . (e) The corresponding schema-agnostic neighbor list.
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function is employed to weight the edges, leveraging the co-
occurrence patterns of profiles in B: each edge is assigned a
weight that is derived exclusively from the (characteristics of
the) blocks its adjacent profiles have in common. For example,
the ARCS function sums the inverse cardinality of common
blocks, assigning higher scores to pairs of profiles sharing
smaller (i.e., more distinctive) blocks: ARCSðpi; pj; BÞ ¼P

bk2Bi\Bj
1=kbkk. Similarly, all otherweighting functions

[12], [20] assign high weights to edges connecting profiles
with strong co-occurrence patterns and low weights to casual
co-occurrences.

Example 1. Fig. 2a shows a set of entity profiles, P . Fig. 2b
illustrates the block collection that is generated by applying
Token Blocking to P , i.e., by creating a separate block for
every token that appears in any attribute value of the input
profiles (these tokens are called attribute value tokens in
the following). Fig. 2c depicts the Blocking Graph that is
derived from the blocks of Fig. 2b, when using the ARCS
function for edgeweighting.

Note that materializing and sorting all edges of a blocking
graph is impractical for large datasets, due to the resulting
huge graph size (i.e., the number of edges it contains) [12]. For
this reason, all existing Meta-blocking methods [12], [20] dis-
card low-weighted edges through a pruning algorithm, while
building the Blocking Graph. As a result, they retain only the
most promising comparisons, which are collected and
employed for Batch ER. Based on such a Blocking Graph, we
present in Section 6 a novel algorithm that generates compari-
sons in a progressiveway.

Neighbor List—TheNeighbor List is the core data structure of
Sorted Neighborhood [8] and its derived methods (i.e., PSN
[4], [5]). It is a list of profiles that is generated by sorting all
profiles alphabetically, according to the blocking keys that
represent them. This data structure is exploited to generate
comparisons under the assumption that the matching likeli-
hood of any two profiles is analogous to their proximity after
sorting.

The Neighbor List can be built from schema-based [19]
or from schema-agnostic [18] blocking keys and is typically
employed to generate blocks: a window slides over the
Neighbor List, and blocks correspond to groups of profiles
that fall into the same window. The size of the window is
iteratively incremented. The resulting blocks are called redun-
dancy-neutral blocks, because the similarity of two profiles is
not related to the number of blocks they share; the corre-
sponding blocking keys might be close when sorted alphabet-
ically, but rather dissimilar.

Example 2. To understand the notion of redundancy-
neutral blocks, consider the sorted schema-agnostic block-
ing keys (i.e., the attribute value tokens) of the profiles in
Fig. 2a, which are depicted in Fig. 2d. The keys ‘carl’

and ‘ellen’ are placed in consecutive positions, but the
corresponding profiles have nothing in common. Fig. 2e
shows the Neighbor List that corresponds to this sorted
list of schema-agnostic blocking keys.

Note that in the schema-agnostic Neighbor List, every
profile typically has multiple placements (e.g., once for each
attribute value token) [18]. Hence, multiple distances can be

measured for any pair of matching profiles. In Section 5, we
present two approaches that leverage this phenomenon to
improve the early quality of Progressive ER.

4 NA€IVE METHODS

Schema-based progressivemethods (see Section 2) are hard to
apply in a domain like Web data, where Variety renders the
selection of schema-based blocking keys into a non-trivial
task. Yet, we can convert the state-of-the-art schema-based
progressive method (PSN) into a schema-agnostic one with
minor modifications, as explained in Section 4.1. We can also
adapt the established batch blocking method (Suffix Array
Blocking [7], [19], [21]) into a progressive method, based on
the ideas of HLR [5], [9], as explained in Section A, available
online. However, our experimental analysis (Section 7) shows
that both methods have inherent limitations that lead to poor
performance, thus calling for the development of more
advanced schema-agnostic progressivemethods.

4.1 Schema-Agnostic PSN (SA-PSN)

The gist of this approach is to combine the sliding window
with incremental size of PSN [5] with the Neighbor List of
the schema-agnostic Sorted Neighborhood [7]. The resulting
method is called Schema-Agnostic Progressive Sorted Neighbor-
hood (SA-PSN).

Inevitably, the Neighbor List of SA-PSNmay involve con-
secutive placeswith the same profile (i.e., a profile which con-
tains two alphabetically consecutive tokens), or two profiles
from the same source. The same applies to entire windows.
For this reason, the comparisons extracted from every win-
dow should involve different profiles (Dirty ER), or profiles
stemming fromdifferent sources (Clean-clean ER).

Example 3. Fig. 3 applies PSN and SA-PSN to the profiles of
Fig. 2a. For PSN, we assume that the schema of p1 and p4
describes all other profiles, even p5 and p6, which repre-
sent unstructured data and would require an information
extraction preprocessing step. This assumption allows for
defining a schema-based blocking key that concatenates
the surname and the first two letters of the name. In this
context, PSN in Fig. 3a starts by emitting all comparisons
produced by the initial window size, w ¼ 1; then, it contin-
ues with those comparisons entailed by window w ¼ 2 etc.
The final pair of matches is emitted during the 15th com-
parison, i.e., after raising the window size to w ¼ 5. In

Fig. 3. Progressive emission of comparisons for (a) PSN, and (b)
SA-PSN; dashed boxes indicate non-matching comparisons.
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Fig. 3b, SA-PSN applies the same procedure to the
schema-agnostic Neighbor List, finding all matching pro-
files within the initial window frame w ¼ 1, after the 14th
comparison.

The main advantage of SA-PSN is that it involves a
parameter-free functionality that requires no schema-based
blocking key definition and has low space and time complex-
ities (Section B, available online). On the flip side, SA-PSN
may perform repeated comparisons: the same pair of profiles
might co-occur multiple times in the various windows. For
example, in Fig. 3b, c12 is emitted as the 1st and the 9th com-
parison within the same window frame, w ¼ 1. Moreover,
the proximity of two profiles in the list may be partially ran-
dom; if more than two profiles share the same blocking key,
they are inserted with a relatively random order in the
Neighbor List. We call this phenomenon coincidental proxim-
ity. As an example, consider all 6 profiles in Fig. 3b that are
associated with the token white; they are placed in random
order at the end of the Neighbor List. Note that PSN also suf-
fers from coincidental proximity, which is a critical point to
consider when devising the schema-based blocking keys.

5 SIMILARITY-BASED METHODS

These methods extend the similarity principle of SA-PSN,
assuming that the closer the blocking keys of two profiles are,
when sorted alphabetically, the more likely they are to be
matching. As explained above, SA-PSN suffers from two
drawbacks: it contains numerous repeated comparisons and it
defines a processing order of comparisons that is partially ran-
dom, due to coincidental proximity. To address both disadvan-
tages, we propose the use of a weighted Neighbor List, which
employs aweighting scheme in order to associate every compar-
ison with a numerical estimation of the likelihood that it
involves a pair of matching profiles. This weighting scheme
leverages the Neighbor List, with a functionality that is both
schema- and domain-agnostic. Consequently, our approach
addresses inherently theVariety ofWeb data.

To this end, we propose the Relative Co-occurrence Fre-
quency (RCF) weighting scheme. RCF counts how many
times a pair of profiles lies at a distance of w positions in the
Neighbor List and then normalizes it by the number of posi-
tions corresponding to each profile. To efficiently imple-
ment RCF and weighted Neighbor List, we go beyond
Neighbor List by introducing a new data structure called
Position Index. In essence, this is an inverted index that asso-
ciates every profile (id) with its positions in the Neighbor
List. Thus, it is generic enough to accommodate any weight-
ing scheme that similarly to RCF relies on the co-occurrence
frequency of profile pairs.

Below, we present two algorithms that exploit the RCF
weighting scheme. Both of them are compatible with any

other schema-agnostic weighting scheme that infers the
similarity of profiles exclusively from their co-occurrences
in the incremental sliding window. The core idea of these
algorithms is to trade a higher computational cost of the ini-
tialization phase, and probably the emission phase, for a sig-
nificantly better comparison order.

5.1 Local Schema-Agnostic PSN (LS-PSN)

This approach applies the selected weighting scheme only
to the comparisons of a specific window size, thus defining
a local execution order. At its core lie two data structures:

i) NL, which is an array that encapsulates the Neigh-
bor List such that NL½i� denotes the profile id that is

placed in the ith position of the Neighbor List. An
exemplaryNL array is shown in Step 1.i of Fig. 4.

ii) PI, which stands for Position Index, is an inverted
index that points from profile ids to positions in NL.
It is implemented with an array that uses profile ids
as indexes, such that PI½i� returns the list of the posi-
tions associated with profile pi in NL. This array
accelerates the estimation of comparison weights,
since it minimizes the computational cost of retriev-
ing the neighbors of any profile in the current win-
dow, as described below. Note that instead of a
Position Index, LS-PSN could use a hash index that
has comparisons as keys and weights as values. This
approach, however, would increase both the space
and the time complexity of comparison weighting.

Algorithm 1. Initialization Phase for LS-PSN

Input: (i) Profile collection P , (ii) Weighting scheme, wScheme

Output: The overall best comparison
1 windowSize = 1;
2 ComparisonList ;;
3 NL[] buildNeighborList(P );
4 PI[] buildPositionIndex(NL[]);
5 foreach pi 2 P do
6 distinctNeighbors  ;; // a set containing distinct

neighbors;
7 frequency[] ;;
8 foreach position 2 PI[i] do
9 pj NL[position+windowSize];
10 if isValidNeighbor(pj) then
11 frequency[j]++;
12 distinctNeighbors.add(j);
13 pk NL[position-windowSize]
14 if isValidNeighbor(pk) then
15 frequency[k]++;
16 distinctNeighbors.add(k);
17 foreach j 2 distinctNeighbors do
18 weighti;j wScheme(frequency[j], j, i);
19 ComparisonList.add(getComparison(i, j, weighti;j);
20 sortInDescreasingWeight(ComparisonList);
21 return ComparisonList:removeFirstðÞ;

Based on these data structures, the initialization phase of
LS-PSN is outlined in Algorithm 1. Initially, it sets the win-
dow size to 1 (Line 1), considering only consecutive profiles.
Then, it creates its data structures (Lines 2-4) and for every
profile pi (Line 5), it iterates over all its positions in the
Position Index (Line 8). In every position, LS-PSN checks

Fig. 4. Applying LS-PSN to the profiles of Fig. 2a.
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the neighbors in both directions, i.e., the profiles located
windowSize places before and after pi (Lines 13 and 9,
respectively) - provided that the corresponding positions
are within the limits of the Neighbor List. For every neigh-
bor pj, LS-PSN checks if j< i (Line 10) and k< i (Line 14) to
avoid repeated comparisons. For every valid neighbor,
LS-PSN increases its frequency (Lines 11 and 15) and adds
it into the set of neighbors (Lines 12 and 16). Then, the over-
all weight for every comparison is computed according to
the selected weighting scheme (Line 18) - assuming a com-
parison between pi and pj, i.e., ci;j, the corresponding RCF

weight is equal to frequency½j�
PI½i�:lengthðÞþPI½j�:lengthðÞ	frequency½j�. Finally, all

comparisons are aggregated and sorted from the highest
weight to the lowest (Line 20) and the top one is returned
(Line 21).

Note that Algorithm 1 pertains to Dirty ER. Yet, it can be
adapted to Clean-clean ER with two minor modifications:
(i) Line 5 iterates over the profiles of P1, and (ii) in Lines 10
and 14, a neighbor pj is considered valid only if pj 2 P2.

The emission phase of LS-PSN is illustrated inAlgorithm2
and is common for bothClean-clean andDirty ER: if the Com-
parison List corresponding to the current window is not
empty, the top weighted one is removed and returned as
output (Line 3). If the list is empty, the window size is incre-
mented (Line 2) and the process for extracting all comparisons
of the new window (Lines 5 - 20 in Algorithm 1) is repeated.
After each emission, the processing can be interrupted. In the
worst case, the emission phase is terminated when the win-
dow size is equal to the size of the Neighbor List (Lines 3-4).
This means that the window is so large that it ends up com-
paring every profilewith all others.

Algorithm 2. Emission Phase for LS-PSN

Output: The next best comparison
1 while ComparisonList:isEmptyðÞ do
2 windowSize++;
3 if NL:sizeðÞ < windowSize then
4 return null;

/* repeat lines 5 - 20 in Algorithm 1 */
5 return ComparisonList:removeFirstðÞ;

Example 4. We demonstrate the functionality of LS-PSN by
applying it to the profiles of Fig. 2a. The result appears in
Fig. 4. Step 0 extracts all blocking keys and sorts them
alphabetically, while Step 1.i forms NL and slides a win-
dow of size 1 over it. In Step 1.ii, we see the result of the
nested loops in Lines 5 - 16 for the RCF weighting scheme
for windowSize ¼ 1. In Step 1.iii, all comparisons are
weighted and sorted from the highest to the lowest weight.
Finally, the sorted comparisons are emitted one by one in
Step 1.iv. Note that the first three comparisons correspond
to the three pairs of duplicate profiles.

5.2 Global Schema-Agnostic PSN (GS-PSN)

The main drawback of LS-PSN is the local execution order it
defines for a specific window size. This means that LS-PSN
is likely to emit the same comparison(s) multiple times, for
two or more different window sizes, since it does not
remember past emissions. GS-PSN aims to overcome this

drawback by defining a global execution order for all the
comparisons in a range of window sizes ½1; wmax�. To this
end, its initialization phase differs from Algorithm 1 in that
Line 1 is converted into an iteration over all window sizes
in ½1; wmax�; this loop starts before Line 8 and ends before
Line 20. This allows for a simpler emission phase, which
just returns the next best comparison, until the Comparison
List gets empty.

Compared to LS-PSN, GS-PSN takes into account more
co-occurrence patterns, when determining comparison
weights. Consequently, its matching likelihood estimations
are expected to be more accurate than those of LS-PSN.
This is achieved through an additional configuration
parameter, wmax, which eliminates all repeated comparisons
in a particular range of windows.

6 EQUALITY-BASED METHODS

These methods rely on the equality principle of the
redundancy-positive blocks that are derived from any
schema-agnostic blocking method or workflow [12]: they
assume that themore blocks two entities share, themore likely
they are to be matching. From these blocks, we extract the
Blocking Graph of Meta-blocking, using the weights of its
edges as approximations for the matching likelihood of the
corresponding comparison. In particular, we order the graph
edges in decreasing weight in order to produce a sorted list
of comparisons at the level of individual blocks or profiles.
Below,we propose two novel algorithms of this type.

6.1 Progressive Block Scheduling (PBS)

This algorithm is specifically designed for Progressive ER,
but relies on a Batch ER technique. Indeed, Block Scheduling
has been proposed in order to optimize the processing order
of blocks in the context of Batch ER, based on the probabil-
ity that they contain duplicates [1]. It assigns to every block
a weight that is proportional to the likelihood that it con-
tains duplicates and then, it sorts all blocks in descending
weight order. Even though we would like to use such a
functionality for Progressive ER, it is not applicable,
because: (i) its weighting cannot generalize to Dirty ER,
applying exclusively to Clean-clean ER, and (ii) it does not
specify the execution order of comparisons inside blocks
with more than two profiles.

Our algorithm, PBS, deals with both issues in two ways:

1) PBS introduces a weighting mechanism that applies
uniformly toClean-clean andDirty ER. In fact, it relies
on the reasonable hypothesis that the smaller a block
is, the more distinctive information it encapsulates
and the more likely it is to contain duplicate profiles,
and vice versa: the larger a block is, the more frequent
is the corresponding blocking key/token and the
more likely it corresponds to a stop word, thus ingest-
ing noise into the matching likelihood of two entities.
Therefore, our scheme sets weights inversely pro-
portional to block cardinalities (i.e., 1=kbik) and sorts
blocks in decreasing weights; the fewer comparisons a
block entails, the higher it is ranked.

2) PBS defines the processing order of comparisons
inside every block using the Blocking Graph. For
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each block bi with kbik> 1, PBS associates all
comparisons with a weight derived from any
schema-agnostic weighting scheme of Meta-block-
ing. Then, it sorts them from the highest weight to
the lowest one.

It is worth noting that all repeated comparisons are dis-
carded before computing their weight. In fact, the efficient
detection of repeated comparisons is crucial for PBS. This
functionality is based on a data structure called Profile Index,
which constitutes an inverted index that associates every
profile with the ids of the blocks that contain it. In this way,
it facilitates the efficient computation of comparison
weights, similar to the Position Index of LS/GS-PSN. Note
that the Profile Index is generic enough to accommodate
any weighting scheme that is based on the block co-occur-
rence frequency of profile pairs.

In practice, the Profile Index is implemented as a two-
dimensional array. The first dimension is of size jP j such
that ProfileIndex½i� points to an array that contains all ids
of the blocks involving profile pi. As a result, the second
dimension contains arrays of variable length. The block
ids in every such array are sorted from the lowest to the
highest one in order to ensure high efficiency for the two
operations that are built on top of the Profile Index.

The first operation is the Least Common Block Index
(LeCoBI) condition, which checks whether a comparison
is repeated in Line 9 of Algorithm 3: given a comparison
cij in block bY , the LeCoBI condition identifies the least
common block id, X, between the profiles pi and pj and
compares it with the id of bY , Y. If the two ids match
(X ¼ Y ), cij corresponds to a new comparison. Otherwise
X < Y , which means that cij has already been compared
in block bX , but is repeated in block bY . Note that X > Y
is impossible, because the id of every block indicates its
position in the processing list after sorting all blocks in
increasing cardinalities (i.e., bk denotes the block placed
in the kth position after sorting). Note also that by order-
ing the block ids of the second dimension in increasing
order, the Profile Index minimizes the checks required for
detecting the least common block id, thus accelerating the
LeCoBI condition.

Algorithm 3. Initialization Phase for PBS

Input: (i) Profile collection P , (ii) Weighting scheme, wScheme

Output: The overall best comparison
1 B buildRedundancyPositiveBlocks(P );
2 B0  blockScheduling(B);
3 ProfileIndex buildProfileIndex(B0);
4 bk B0.removeFirst();
5 ComparisonList ;;
6 foreach cij 2 bk do
7 Bi ProfileIndex.getBlocks(pi);
8 Bj ProfileIndex.getBlocks(pj);
9 if nonRepeated(k, Bi, Bj) then
10 wi;j wScheme(k, Bi, Bj);
11 ComparisonList.add(getComparison(i, j, wi;j));
12 sortInDescreasingWeight(ComparisonList);
13 returnComparisonList:removeFirstðÞ;

The second operation is Edge Weighting, which in Line 10
of Algorithm 3 infers the matching likelihood of every

comparison from the weight of the corresponding edge in
the blocking graph. Given a non-repeated comparison cij, it
compares the block lists associated with profiles pi and pj in
order to estimate the number of blocks they share. This
number, which lies at the core of practically all Meta-block-
ing weighting schemes [12], can be derived from the evi-
dence provided by the Profile Index. Note that by ordering
the block ids of its second dimension in increasing order,
the Profile Index allows for accelerating Edge Weighting by
traversing the two block lists in parallel.

On the whole, the initialization phase of PBS appears in
Algorithm 3. Initially, it creates a redundancy-positive block
collection and sorts its elements in non-decreasing order of
comparisons (Lines 1-2). Then, it builds the corresponding
Profile Index (Line 3) and goes on to remove the first (i.e.,
smallest) block, iterating over its comparisons (Lines 4-6). For
every comparison cij, PBS gets the block lists that are associ-
ated with profiles pi and pj from the Profile Index (Lines 7-8).
Based on these lists, it evaluates the LeCoBI condition, check-
ing whether cij is repeated or not (Line 9). If cij is a new com-
parison, it is placed in the Comparison List along with the
weight of the corresponding Blocking Graph edge (Lines 10-
11). After processing all comparisons in the current block, the
elements of the Comparison List are sorted in decreasing
weight and the first one is emitted (Lines 12-13).

The emission phase of PBS appears in Algorithm 4. If the
Comparison List is empty, it processes the next block b02B0,
applying the Lines 4-12 of Algorithm 3 to it. Otherwise, the
next best comparison is emitted from the Comparison List.

Algorithm 4. Emission Phase for PBS

Output: The next best comparison
1 if ComparisonList:isEmptyðÞ then

/* repeat lines 4 - 12 in Algorithm 3

2 return ComparisonList:removeFirstðÞ;

Example 5. Fig. 5 illustrates the functionality of PBS by
applying it to the blocks of Fig. 2b. First, it sorts them in
non-decreasing cardinality and assigns to each one an incre-
mental block id that indicates its processing order (note that
we chose a random permutation of the blocks that have the
same number of comparisons, without affecting the end
result). Then, PBS processes the sorted list of blocks one
block at a time, emitting iteratively the comparisons
entailed in every block. Inside every block, all comparisons
that satisfy the LeCoBl condition (i.e., non-repeated com-
parisons) are sorted according to the corresponding edge

Fig. 5. Applying PBS to the blocks of Fig. 2b.
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weight in the Blocking Graph of Fig. 2c. For instance, when
PBS processes b2, the comparison c45 satisfies the LeCoBl
condition, since the least common block id shared by p4 and
p5 is 2. This means thatPBS encounters c45 for the first time
in b2, assigning the edge weight 1.33 to it. In contrast, when
PBS processes b3, the comparison c45 does not satisfy the
LeCoBl condition anymore and is thus discarded.

6.2 Progressive Profile Scheduling (PPS)

The block-centric functionality of PBS is crafted for an Edge
Weighting approach that operates at the level of individual
comparisons. We now propose a novel progressive method
with entity-centric functionality, called Progressive Profile
Scheduling (PPS).

PPS is based on the concept of duplication likelihood, i.e.,
the likelihood of an individual profile pi to have matches. In
Clean-clean ER, the duplication likelihood of pi 2 P1 corre-
sponds to its likelihood to have a match in P2, since there
can be up to one matching profile per entity in every profile
collection. In Dirty ER, though, the duplication likelihood of
pi is analogous to the size of its equivalence cluster, i.e.,
high values indicate that pi matches with many other pro-
files, and vice versa for low values.

In fact, PPS aims to sort all profiles in decreasing dupli-
cation likelihood, forming a data structure that is called
Sorted Profile List. Then, moving from the top to the bottom
of this list, PPS goes iteratively through every profile,
emitting the top-k weighted comparisons that entail it in
decreasing matching likelihood.

To build the Sorted Profile List, PPS derives the duplica-
tion likelihood of every profile from a given Blocking Graph.
The underlying assumption is the same as for all methods
based on a Blocking Graph: the weight of a blocking graph
edge captures the matching likelihood between the adjacent
profiles. Thus, the duplication likelihood of each node (i.e.,
profile) is estimated by aggregating the weights of its incident
edges. In particular, our implementation ofPPS approximates
the duplication likelihood of a profile through the average
weight of the edges that are incident to the corresponding
node - other aggregation functions can be employed instead,
but the average one consistently exhibited high performance
across different datasets.

During the creation of the Sorted Profile List, PPS also
initializes the Comparison List with the set of the top-
weighted comparisons of each node. This step does not
require any additional computational cost. While investigat-
ing the neighborhood of a particular node, PPS retains in a
local variable the highest edge weight along with the corre-
sponding comparison. After traversing all edges in the
neighborhood, the overall best comparison is added to the
set topComparisonsSet. As soon as all nodes have been
processed, PPS sorts the elements of topComparisonsSet in
decreasing matching likelihood and adds them to the Com-
parison List. In the end, this process allows for emitting the
comparison with the highest weight across the entire Block-
ing Graph, i.e., the comparison placed in the first position of
the Comparison List.

Inmore detail, the initialization phase ofPPS is outlined in
Algorithm 5. First, a redundancy block collection is created
alongwith the corresponding ProfileIndex (Lines 1-2). Subse-
quently, PPS iterates over all input profiles (Line 5) and for

every profile pi, it goes through the blocks that contain it, Bi,
which are derived from the Profile Index (Line 8). For every
such block, it iterates over the co-occurring profiles, placing
them into the set of neighbor ids and updating their overall
weight (Lines 9-11). After examining all blocks, it goes
through the set of neighbor profiles in order to estimate the
overall duplication likelihood and identify the top-weighted
comparison (Lines 12-17). The selected comparison is then
added to the set of top-weighted comparisons, which makes
sure that none of them is repeated, while the current profile is
added to the Sorted Profile List along with its duplication
likelihood (Lines 18-20). After processing all profiles, the top-
weighted comparisons are added to the Comparison List to
be sorted in decreasing order of weights; the same applies
to Sorted Profile List (Lines 21-23). Finally, the overall top-
weighted comparison is emitted (Line 24).

Algorithm 5. Initialization Phase for PPS

Input: (i) Profile collection: P , (ii) Weighting scheme, wScheme

Output: The overall best comparison
1 B buildRedundancyPositiveBlocks(P );
2 ProfileIndex buildProfileIndex(B);
3 SortedProfileList ;;
4 topComparisonsSet ;;
5 foreach pi 2 P do
6 weights[] ;;
7 distinctNeighbors ;;
8 foreach bk 2 ProfileIndex:getBlocks (pi) do
9 foreach pj(6¼pi) 2 bk do
10 weights[j] += wScheme(pj, pi, bk);
11 distinctNeighbors.add(j);
12 topComparison null;
13 duplicationLikelihood 0;
14 foreach j 2 distinctNeighbors do
15 duplicationLikelihood += weights[j];
16 if topComparison.getWeight() < weights[j] then
17 topComparison getComparison(i, j, weights[j];

18 topComparisonsSet.add(topComparison);
19 duplicationLikelihood /= distinctNeighbors.size();
20 SortedProfileList.add(pi, duplicationLikelihood);

21 ComparisonList.addAll(topComparisonsSet);
22 sortInDescreasingWeight(ComparisonList);
23 sortInDescreasingWeight(SortedProfileList);
24 return ComparisonList:removeFirstðÞ;

The emission phase of PPS relies on two pillars:

i) A data structure called SortedStack, which contains a
set of comparisons such that they are constantly
sorted in non-decreasing weight, from the lowest to
the highest one. Thus, its head always corresponds
to the comparison with the lowest weight and can be
efficiently removed with the a pop operation of con-
stant computational cost, Oð1Þ.

ii) A custom mechanism for avoiding repeated compari-
sons that relies on a set with all entities that have
already been processed, called checkedEntities. Before
considering the comparison of the current profile pi
with a co-occurring one pj, cij, we investigate whether
checkedEntities contains the id j. If yes, cij is skipped,
based on the observation that the most important
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comparisons of pj have already been emitted. In this
way, we disregard even comparisons that are among
the Kmax top-weighted ones for the current entity, pi,
but not for the previously examined one, pj. The rea-
son is that pj’s higher duplication likelihood provides
more reliable evidence for cij’s low matching
likelihood.

In more detail, the emission phase of PPS is outlined in
Algorithm 6. Initially, it emits the top-weighted comparisons
that were placed in the Comparison List during initialization.
As soon as this list gets empty, PPS iterates over the individ-
ual profiles according to their duplication likelihood, from the
highest to the lowest one (Lines 2-4). For the next available
profile, PPS retrieves the associated blocks from the Profile
Index (Line 9) and iterates over their contents in order to
gather their Kmax top-weighted comparisons (Lines 10-19):
initially,PPS goes through the co-occurring profiles, skipping
the already examined ones (Lines 10-12). The non-examined
ones are then added to the set of neighbor ids and their overall
weight is updated (Lines 13-14). After examining all blocks,
PPS estimates the overall weight for every neighbor, pushing
the corresponding comparison in the sorted stack (Lines 15-
16). If the size of the stack exceedsKmax, the comparison with
the lowest weight is popped (Lines 17-18).

Finally, the remaining comparisons are sorted in decreas-
ing weights and placed in the Comparison List (Line 19),
followed by emission of the top-weighted comparison
(Line 20).

Example 6. To illustrate the functionality of PPS, consider
the example in Fig. 6. During the initialization phase, PPS
iterates over all nodes of the Blocking Graph to compute the
average weight of the incident edges along with the top-
weighted comparison in every node neighborhood. At the
end of this iteration, all top-weighted comparisons and all
profiles are sorted in non-increasingweights, from the high-
est to the lowest one, in order to form the Comparison List
in Fig. 6a and the Sorted Profile List in Fig. 6b, respectively.
During the emission phase, PPS initially emits all compari-
sons in the Comparison List of Fig. 6a. Then, it goes through
the Sorted Profile List, one node at a time, gathering the top-
k comparisons in the corresponding node neighborhood.
For instance, Fig. 6c shows the neighborhood of p2, whose
top-2 edges are inserted in the Comparison List of Fig. 6d.

Note that p1 has already been processed, since it was placed
first in the Sorted Profile List of Fig. 6b. As a result, the con-
trol in Line 11 in Algorithm 6, checkedEntities.contains(1),
returns true and c12 is not inserted in the Comparison List
of Fig. 6d, despite its high edgeweight.

Algorithm 6. Emission Phase for PPS

Output: The next best comparison
1 checkedEntities ;;
2 if ComparisonList:isEmptyðÞ then
3 if SortedProfileList:isNotEmptyðÞ then
4 pi = SortedProfileList:removeFirstðÞ;
5 checkedEntities.add(i);
6 weights[] ;;
7 distinctNeighbors ;;
8 SortedStack ;;
9 foreach bk 2 ProfileIndex.getBlocks(pi) do

10 foreach pj(6¼pi) 2 bk do
11 if checkedEntities:contains(j) then
12 continue;
13 weights[j] += wScheme(pj, pi, bk);
14 distinctNeighbors.add(j);
15 foreach j 2 distinctNeighbors do
16 SortedStack.push(getComparison(i, j, weights[j]);
17 ifKmax < SortedStack:sizeðÞ then
18 SortedStack.pop();
19 ComparisonList  sortInDescreasingWeight (Sorted

Stack);
20 return ComparisonList:removeFirstðÞ;

7 EXPERIMENTS

Datasets. For the experimental evaluation, we employ 7
diverse real-world datasets that are widely adopted in
the literature as benchmark data for ER[12], [19], [20],
[22], [23]. Their characteristics are reported in Table 1.
The census, restaurant, cora, and cddb datasets are
extracted from a single data source containing duplicated
profiles, hence they are meant to test Dirty ERtasks. The
remaining datasets (movies, dbpedia, and freebase)
are suitable for testing scalability, as well as
Clean-clean ER, since they are extracted from two differ-
ent data sources, where matching profiles exist only
between a source and another: movies from imdb.com

and dbpedia.org; dbpedia from two different snap-
shots of DBpedia (dbpedia.org2007-2009);2 freebase

from developers.google.com/freebase/ and
dbpedia.org (extracted from [23]). For all the datasets,
the ground truth is known and provided with the data.

For the structured datasets, the best schema-based blocking keys
for PSN are known from the literature [7], [19].3 Note that the
schema-based methods are inapplicable to the large, heteroge-
neous datasets. This is due to the size of the attribute set
and the lack of a schema-alignment for Clean-clean datasets.
Finally, in dbpedia and freebase, there is a very small overlap
in the attributes describing their profile collections.

Fig. 6. (a) The comparison list after the initialization phase, containing
the top-weighted comparison of every node in the blocking graph of
Fig. 2c. (b) The corresponding sorted profile list. (c) The node neighbor-
hood of p2 in the same blocking graph. (d) The comparison list after proc-
essing p2 during the emission phase.

2. Due to the constant changes in DBpedia, the two versions share
only 25 percent of the name-value pairs, forming an non-trivial ER task
[7], [12].

3. See also the code at: https://sourceforge.net/projects/febrland
https://sourceforge.net/projects/erframework.
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System Setup. All methods are implemented in Java 8
and the code is publicly available.4 All experiments have
been performed on a server running Ubuntu 14.04, with
80 GB RAM, and an Intel Xeon E5-2670 v2 @ 2.50 GHz
CPU. Note that we limited the maximum heap size
parameter of the JVM to 8 GB for the structured datasets
and for movies, while for DBPedia and Freebase we
set that parameter to 80 GB.

Parameter Configuration.We apply the following settings to
all datasets. ForGS-PSN, we setwmax = 20 for structured data-
sets andwmax = 200 for large, heterogeneous datasets|prelim-
inary experiments have shown that these values work for all
the datasets. For PBS and PPS, we can use any schema-
agnostic blockingmethod that produces redundancy-positive
blocks, like DisNGram [24]. We opted for the Token Blocking
Workflow, which has been experimentally verified to address
effectively and efficiently the Volume and Variety of
Web data [12]. It consists of the following steps: (1) Schema-
agnostic Standard Blocking [7] creates a separate block for
every attribute value token that stems from at least two pro-
files. (2) Block Purging [12] discards large blocks that corre-
spond to stop words, involving more than 10 percent of the
input profiles. (3) Block Filtering [12] retains every profile in 80
percent of its most important (i.e., smallest) blocks. (4) ARCS
performs edgeweighting on the BlockingGraph.

Metrics. Recall is typically employed to evaluate the effec-
tiveness of a Batch ER methodm over a profile collection P .
It measures the portion of detected matches: recall ¼
jDmj=jDP j, whereDm is the set of matches detected (emitted)
bym, whileDP is the set of all matches in P .

In Progressive ER, we are interested in how fast matches
are emitted. To illustrate this, we consider recall progressive-
ness by plotting the evolution of recall (vertical axis) with
respect to the normalized number of emitted comparisons (hori-
zontal axis): ec
¼ec=jDP j, where ec is the number of emitted
comparisons at a certain time during the processing. The
purpose of this normalization is twofold: (i) it allows for
using the same scale among different datasets, and (ii) it
facilitates the comparison of all progressive methods with
the ideal one, which achieves recall=1 after emitting just the
first jDP j comparisons, i.e., at ec
¼1.

To facilitate the comparisons between progressive meth-
ods, we quantify their progressive recall using the area under

the curve (AUC) of the above plot (the AUC expressed in func-
tion of ec - not the normalized ec
 - is known in the literature
as progressive recall [16], and is employed for the same pur-
pose). For a methodm, we indicate withAUCm@ec
 the value
of AUC for a given ec
; for instance, AUCPSN@5 is the area

under the recall curve of the method PSN after the emission

of ec¼5�jDP j comparisons. To restrict AUCm@ec
 to the inter-

val ½0; 1�, we normalize it with the performance of the ideal

method:AUC
m@ec
 ¼ AUCm@ec

AUCideal@ec
.AUC



m@ec
 is called normal-

ized area under the curve: higher values correspond to a better
progressiveness, with the ideal method having AUC
ideal¼1 for
any value of ec
.

For the time performance evaluation of a method m,
we consider the initialization time and the comparison time:
the former is the time required to emit the first compari-
son, considering all the pre-processing steps (e.g.,
Schema-agnostic Standard Blocking, Block Purging, Block
Filtering for PBS); the comparison time is the average
time between two consecutive comparison emissions. It
includes both the emission time (i.e., the time required
for generating the next best comparison) and the time
required for applying the selected match function to that
comparison.

Baselines. In the following, we use PSN and SA-PSN as
baseline methods. As explained above, the best schema-
based blocking keys, which are necessary for PSN, are only
known for the Dirty ER datasets. For the Clean-clean ER
ones, no such blocking keys have been reported in the litera-
ture. As a result, we consider only SA-PSN as baseline
method for Clean-clean ER datasets.

7.1 Structured Datasets

We now compare our schema-agnostic methods against the
state-of-the-art schema-based method, i.e., PSN [4], [5], on
the structured datasets. We assess the relative effectiveness
of all methods with respect to recall progressiveness. The
corresponding plots appear in Fig. 7.

They depict the performance of all methods for up to
ec
¼30, i.e., we measure the recall for a number of compari-
sons thirty times the comparisons required by the ideal
method to complete each ER task. We focus, though, on the
interval [0,10] so as to highlight the behavior of the methods
in the early stage of ER, the most critical for pay-as-you-go
applications.

TABLE 1
Dataset Characteristics: ER Type, Number of Entity Profiles (jP j), Number of

Attribute Names, Number of Existing Matches (jDP j), and Average
Number of Name-Value Pairs per Entity (j�pj)

ER type jP j #attr. jDP j j�pj
Structured Datasets

census DirtyER 841 5 344 4.65
restaurant DirtyER 864 5 112 5.00
cora DirtyER 1.3 k 12 17 k 5.53
cddb DirtyER 9.8 k 106 300 18.75

Large, Heterogeneous Datasets

movies Clean-cleanER 28 k—23 k 4—7 23k 7.11
dbpedia Clean-cleanER 1.2 M—2.2 M 30 k—50 k 893 k 15.47
freebase Clean-cleanER 4.2 M—3.7 M 37 k—11 k 1.5 M 24.54

4. https://stravanni.github.io/progressiveER/
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We observe that the advanced schema-agnostic methods
outperform PSN, SA-PSN and SA-PSAB across all datasets.5

Only for census does PSN perform better than PBS (but not
better that LS=GS-PSN)—see Fig. 7a. This is because census
contains very discriminative attributes, whose values are
employed as blocking keys forPSN,6 identifying its duplicates
with very high precision. Moreover, the profiles of census
have short strings as attribute values: on average, every profile
contains just 4-5 distinct tokens in its values. Inevitably, this
sparse information has significant impact on the performance
of similarity- and equality-based methods, restricting the
co-occurrence patterns that lie at their core, i.e., the co-
occurrences in windows for the former, and in blocks for the
latter. The impact is larger in the latter case, due to the stricter
definition of co-occurrence, which requires the equality of
tokens, not just their similarity.

On the other hand, for datasets with high token overlap
between matching profiles (i.e., they share many attribute
value tokens) and non-discriminative attributes, which have
the same value for many different profiles, our methods sig-
nificantly outperform the schema-based PSN. For instance,
the performance of PPS in the restaurant dataset (Fig. 7b)
is very close to the ideal method:AUC
PPS@1=0.93, i.e., 104 out

of the first 112 emitted comparisons arematches.7

Among the advanced methods, we now list the best per-
former for each dataset. On census (Fig. 7a), GS-PSN is
the best performer, but LS-PSN is only slightly worse. On
restaurant (Fig. 7b), PPS has the best progressiveness
until recall 98 percent, but LS-PSN has a similar progres-
siveness and reaches 100 percent earlier than PPS (due to
the plot scale, though, this is not evident in Fig. 7). On cora

(Fig. 7c), GS-PSN has the best initial progressiveness, but

equality-based methods reach the highest recall from ec
¼4
on|note that the final recall of PBS and PPS is lower than
100 percent, because the underlying Token Blocking cannot
identify all duplicates in cora. On cddb (Fig. 7d), PPS has
the best progressiveness for recall up to 65 percent, but for
higher recall, LS-PSN is the best performer.

We now compare all the methods with respect to their
mean value of normalized area under the curve. Fig. 8 shows
the mean AUC
 of all methods across all structured datasets
for four different values of ec
: 1, 5, 10 and 20. We observe
that, on average, for any level ofAUC
, LS-PSN andGS-PSN
are the top performers, in particular for the earliest phase of
Progressive ER: their AUC
@1 is three times the AUC
@1 of
PSN andPBS, and�18% higher than that ofPPS.

Overall, we conclude that the best performing methods
for structured datasets are LS-PSN and GS-PSN (the differ-
ence in their performance is insignificant8). Thus, the selec-
tion of one method over the other should be driven by the
differences in their space and time complexities for the ini-
tialization and emission phases, depending on wmax. The
higher wmax is, the higher gets the space complexity of
GS-PSN in comparison to LS-PSN; thus, LS-PSN should be
preferred when the availability of memory may be a issue.
Yet, if memory is not an issue, GS-PSN should be preferred,
as it avoids multiple emissions of the same comparisons.

7.2 Large, Heterogeneous Datasets

We now assess the relative performance of all methods with
respect to recall progressiveness over the large, heteroge-
neous datasets movies, dbpedia, freebase. The corre-
sponding plots appear in Fig. 9.

The results confirm our intuition about the ineffective-
ness of the na€ıve SA-PSN and SA-PSAB, since all advanced
methods outperform it to a significant extent across all data-
sets. SA-PSAB also cannot scale to the largest datasets (see
Figs. 9b and 9c) due to the huge blocks in the highest layers
of its suffix trees, which entail too many comparisons.

The only exceptions are LS-PSN and GS-PSN9 on free-

base (Fig. 9c), which perform poorly: the performance of
LS-PSN is similar to that of SA-PSN, while GS-PSN has
lower recall progressiveness than SA-PSN, terminating
before achieving a recall greater that 20 percent. The perfor-
mance of these two advanced methods can be explained by
the characteristics of the dataset. Freebase is composed of

Fig. 8. Mean AUC
m over the structured datasets.

Fig. 7. Recall progressiveness over the structured datasets.

5. In Fig. 7d, the curve of SA	 PSN is too low to be visible, almost
coinciding with the horizontal axis.

6. Soundex encoded surnames concatenated to initials and zipcodes.
7. 104 is 93 percent of 112, which is the number of existing dupli-

cates in restaurant.

8. Employing the t-test for assessing the significance of the differ-
ence of the means: p-value ¼ 0:95.

9. On freebase, we limited the number of maximum comparisons
of GS	 PSN according to the available memory, i.e., 80GB.
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RDF triples. The extracted tokens consist of RDF keywords,
URI, and other RDFproperties, which generate a noisyNeigh-
bor List, since their alphabetical ordering is often meaning-
less. Thus, the RCF weighting scheme cannot approximate
correctly the similarity of the profiles. On the other hand,PBS
is able to get the most of the semantics in URI tokens, due to
the equality requirement, thus being more robust on free-

base than the similarity-basedmethods.
Overall, PPS is the best performer on movies (Fig. 9a)

and dbpedia (Fig. 9b); while, on freebase (Fig. 9c), PBS
achieves the highest recall progressiveness for ec
< 2 and
ec
> 12 (PPS is the best performer for 2<ec
< 12). Again,
to understand which method is the top performer, we com-
pare them with respect to their mean value of normalized
area under the curve. Fig. 10 shows the mean AUC
m of all
methods across all datasets for four different values of ec
:
1, 5, 10 and 20. We observe that PPS is the best performer
for any level of AUC
m, and conclude that, overall, it is the
best performing progressive method over large, heteroge-
neous datasets.

8 CONCLUSIONS AND FUTURE WORK

Wehave introduced schema-agnosticmethods tomaximize the
recall progressiveness of Entity Resolution for pay-as-you-go
applications, while addressing the Volume and Variety
dimensions of Big Data. They can be distinguished into
equality-based (PBS and PPS) and similarity-based methods
(LS-PSN and GS-PSN). Our experimental evaluation with
several real, structured datasets demonstrates that the pro-
posed methods significantly outperform the schema-based
state-of-the-art method in the field, PSN, identifying most of
thematchesmuch earlier.

Our experiments also indicate that both equality-based
methods exhibit a quite robust performance across both
structured and semi-structured (heterogeneous) datasets. In
contrast, both similarity-based techniques achieve very high

performance over structured datasets and very low over
semi-structured datasets. The reason is the structured data-
sets are usually curated, principally containing character-
level errors, whereas the semi-structured datasets abound
in both character- and token-level noise (e.g., URIs as attri-
bute values). In the latter cases, it is harder for two matching
entities with similar attribute values to be placed in conse-
cutive positions. We can conclude, therefore, that the simi-
larity-based techniques can only be used over structured
datasets, while the equality-based techniques perform well
under all settings. In fact, PBS is suited for ER tasks involv-
ing cheap match functions and with very limited time bud-
get (its initialization time is the lowest among the advanced
methods). Otherwise, PPS achieves the best performance,
both in terms of recall progressiveness (Fig. 10) and execu-
tion time (Fig. 3, available online).

An interesting direction for extending our work is to
examine the massive parallelization of our approach
based on existing methods for parallelizing Sorted Neigh-
borhood [31], [32] and Meta-blocking [33] in the context
of MapReduce.
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