
Generalized Supervised Meta-blocking
Luca Gagliardelli

U. of Modena and Reggio Emilia, Italy
luca.gagliardelli@unimore.it

George Papadakis
U. of Athens & PPC, Greece

gpapadis@di.uoa.gr

Giovanni Simonini
U. of Modena and Reggio Emilia, Italy

simonini@unimore.it

Sonia Bergamaschi
U. of Modena and Reggio Emilia, Italy

sonia.bergamaschi@unimore.it

Themis Palpanas
Université Paris Cité & IUF, France

themis@mi.parisdescartes.fr

ABSTRACT
Entity Resolution is a core data integration task that relies on Block-
ing to scale to large datasets. Schema-agnostic blocking achieves
very high recall, requires no domain knowledge and applies to data
of any structuredness and schema heterogeneity. This comes at the
cost of many irrelevant candidate pairs (i.e., comparisons), which
can be signi�cantly reduced byMeta-blocking techniques that lever-
age the entity co-occurrence patterns inside blocks: �rst, pairs of
candidate entities are weighted in proportion to their matching
likelihood, and then, pruning discards the pairs with the lowest
scores. Supervised Meta-blocking goes beyond this approach by
combining multiple scores per comparison into a feature vector
that is fed to a binary classi�er. By using probabilistic classi�ers,
Generalized Supervised Meta-blocking associates every pair of can-
didates with a score that can be used by any pruning algorithm.
For higher e�ectiveness, new weighting schemes are examined
as features. Through extensive experiments, we identify the best
pruning algorithms, their optimal sets of features, as well as the
minimum possible size of the training set.

PVLDB Reference Format:
Luca Gagliardelli, George Papadakis, Giovanni Simonini, Sonia
Bergamaschi, and Themis Palpanas. Generalized Supervised Meta-blocking.
PVLDB, 15(9): 1902 - 1910, 2022.
doi:10.14778/3538598.3538611

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Gaglia88/sparker.

1 INTRODUCTION
Entity Resolution (ER) is the task of identifying entities that describe
the same real-world object among di�erent datasets [4, 10, 22, 32].
ER is a core data integration task with many applications that range
from Data Cleaning in databases to Link Discovery in Semantic
Web data [7, 10]. Despite the bulk of works on ER, it remains a chal-
lenging task [4, 14, 22, 24]. One of the main reasons is its quadratic
time complexity: in the worst case, every entity has to be compared
with all others, thus scaling poorly to large volumes of data.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.
doi:10.14778/3538598.3538611

Model: Apple iPhone X
Category: Smartphone

model: Samsung S20
group: smartphone

type: Samsung 20
descr: smartphone
Huawei Mate 20

smartphone

name: iPhone 10
type: smartphone
producer: Apple Samsung Fold foldable phone

e1

e2

e3

e4

e5

e6

(a) (b)Samsung foldable
Your perfect mate phone,

today 20 % discount
e7

b4(20)
e4 e5 e7
b4(20)
e4 e5 e7

b6(mate)
e6 e7

b6(mate)
e6 e7

b2(iphone)
e1 e3

b2(iphone)
e1 e3

b3(samsung)
e2 e4 e6 e7
b3(samsung)
e2 e4 e6 e7

b1(apple)
e1 e3

b1(apple)
e1 e3

b5(smartphone)
e1 e2 e3 e4 e5
b5(smartphone)
e1 e2 e3 e4 e5

b7(phone)
e6 e7

b7(phone)
e6 e7

b8(fold)
e6 e7

b8(fold)
e6 e7

Figure 1: (a) The input entities (smartphone models), and (b)
the redundancy-positive blocks produced by Token Blocking.

To tame its high complexity, Blocking is typically used [5, 6, 27,
28]. Instead of considering all possible pairs of entities, it restricts
ER to blocks of entities that have identical or similar signatures. Ex-
tensive experimental analyses have demonstrated that the schema-
agnostic signatures outperform the schema-based ones, without
requiring domain or schema knowledge [5, 21]. As a result, parts
of any attribute value in each entity can be used as signatures.
Example 1 (Schema-agnostic blocking). The pro�les in Figure 1a
contain three duplicate pairs, h41, 43i, h42, 44i and h46, 47i, and are
clustered using Token Blocking (a block is created for every token ap-
pearing in at least 2 pro�les). The resulting blocks appear in Figure 1b.
ER examines all pairs inside each block, detecting all duplicates.

On the downside, the resulting blocks involve high levels of
redundancy: every entity is associated with multiple blocks, thus
yielding numerous redundant and super�uous comparisons [2, 31].
The former are pairs of entities that are repeated across di�erent
blocks, while the latter involve non-matching entities. For example,
the pair h41, 43i is redundant in 12, as it is already examined in 11,
while the pair h42, 46i 2 13 is super�uous, as the two entities are
not duplicates. Both types of comparisons can be skipped, reducing
the computational cost of ER without any impact on recall [20, 28].

To this end, Meta-blocking [23] discards all redundant compar-
isons, while reducing signi�cantly the portion of super�uous ones.
It relies on two components to achieve this goal:

1) A weighting scheme, which is a function that receives as input
a pair of entities along with their associated blocks and returns a
score proportional to their matching likelihood. The score is based
on the co-occurrence patterns of the entities into the original set
of blocks: the more blocks they share and the more distinctive (i.e.,
infrequent) the corresponding signatures are, the more likely they
are to match and the higher is their score.

2) A pruning algorithm, which receives as input all weighted
pairs and retains the ones that are more likely to be matching.
Example 2 (Unsupervised Meta-blocking). Unsupervised Meta-
blocking builds a blocking graph (Figure 2a) from the blocks in Figure
1b as follows: each entity pro�le is represented as a node; two nodes
are connected by an edge if the corresponding pro�les co-occur in

https://doi.org/10.14778/3538598.3538611
https://github.com/Gaglia88/sparker
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3538598.3538611

1
1
11 1

2
2

1
1

3

2

2
3

1

1

1

(a)

3

2
2 2

3
3

(b)

b'1
e1 e3
b'1
e1 e3

b'2
e2 e4
b'2
e2 e4
b'4
e4 e7
b'4
e4 e7

b'3
e4 e5
b'3
e4 e5

b'6
e6 e7
b'6
e6 e7

b'5
e5 e7
b'5
e5 e7

(c)
Figure 2: UnsupervisedMeta-blocking example: (a) The block-
ing graph of the blocks in Figure 1b, using the number of
common blocks as edge weights, (b) a possible pruned block-
ing graph, and (c) the new blocks.

v12

v13

v35
v57

v67

v26

…
…

…

…
…

(a)

1

1

1
1

(b)

b'1
e1 e3
b'1
e1 e3

b'2
e2 e4
b'2
e2 e4
b'4
e6 e7
b'4
e6 e7

b'3
e4 e5
b'3
e4 e5

(c)
Figure 3: Supervised Meta-blocking example: (a) a graph
where each edge is associated with a feature vector, (b) the
graph pruned by a binary classi�er, and (c) the output, which
contains a new block per retained edge.

at least one block; each edge is weighted according to a weighting
scheme—in our example, the number of blocks shared by the adjacent
pro�les. Finally, the blocking graph is pruned according to a pruning
algorithm—in our example, for each node, we discard the edges with a
weight lower than the average of its edges. The pruned blocking graph
appears in Figure 2b, with the dashed lines representing the super�u-
ous comparisons. A new block is then created for every retained edge.
Figure 2c presents the �nal blocks, which involve signi�cantly fewer
pairs without missing the matching ones. This is a schema-agnostic
process, just like the original blocking method.

Supervised Meta-blocking [25]. It models the restructuring
of a set of blocks as a binary classi�cation task. Its goal is to train a
model that learns to classify every comparison as positive (i.e., likely
to be matching) or negative (i.e., unlikely to be matching). Every pair
is associated with a feature vector comprising the most distinctive
weighting schemes that are used by learning-free meta-blocking.
Example 3 (Supervised Meta-blocking). Figure 3a shows the block-
ing graph of the blocks in Figure 1b, where every edge is associated
with a feature vector. For instance, each pair of entities h48 , 4 9 i can be
represented by a feature vector E8, 9 = {⇠⌫(48 , 4 9), �((48 , 4 9)}, where
⇠⌫(48 , 4 9) is the number of their common blocks and �((48 , 4 9) is
the Jaccard coe�cient of blocks associated with 48 and 4 9 . Then, a
binary classi�er is trained with a sample of labelled vectors and is
used to predict whether a pair h48 , 4 9 i is a match (;8, 9=1) or not (;8, 9=0).
The pairs classi�ed as positive are retained, as shown in Figure 3b (the
dashed line indicates the super�uous pair h44, 45i). The end result,
which includes a new block per retained pair, appears in Figure 3c.

Supervised Meta-blocking involves the overhead of generating
a labelled dataset, but by representing each edge with multiple
features, it is more accurate in discriminating matching and non-
matching pairs than Unsupervised Meta-blocking, which employs
a single weight per edge. Indeed, Supervised Meta-blocking con-
sistently yields better precision and recall than the unsupervised
approach [25]. Yet, the binary classi�er it employs acts as a learned,

0.36

0.55

0.26 0.3

0.41

0.90.7

0.55 0.4

0.4

0.2

0.35
0.4

0.3
0.2

(a)

0.55
0.9

0.7

0.55

(b)

b'1
e1 e3
b'1
e1 e3
b'2
e2 e4
b'2
e2 e4
b'3
e6 e7
(c)

Figure 4: Generalized Supervised Meta-blocking example:
(a) a graph weighted with a probabilistic classi�er, (b) the
pruned graph, and (c) the new blocks.

unique, global threshold used to prune the edges. De�ning a lo-
cal threshold for each node would allow a �ner control on which
edges to prune. This is the intuition behind Generalized Supervised
Meta-blocking, as illustrated in the following example.

Example 4 (Generalized Supervised Meta-blocking). Our new ap-
proach builds a graph where every edge is associated with a feature
vector (as Supervised Meta-blocking does in Figure 3a) and trains a
probabilistic classi�er, which assigns a weight (the matching proba-
bility) to each edge (Figure 4a). Then, several weight- and cardinality-
based algorithms can be applied. For example, SupervisedWNP prunes
the graph as follows: for each node, all adjacent edges with a weight
lower that 0.5 are discarded; for the remaining edges, only those with
a weight greater than the average one are kept. Figure 4b shows the
result of this step: two edges may be assigned the same weight by
the probabilistic classi�er, e.g., h41, 43i and h44, 45i, but they may
be kept (e.g., the matching pair h41, 43i) or discarded (e.g., the non-
matching pair h44, 45i) depending on their context, i.e., the weights in
their neighborhood. Note that h44, 45i is not discarded by Supervised
Meta-blocking in Figure 3b, which thus underperforms Generalized
Supervised Meta-blocking in terms of precision (for the same recall).

Our Contributions. Our work is motivated by a real-world
application that aims to deduplicate a legacy customer database. It
contains ⇠7.5 million entries that correspond to electricity supplies
and, thus, are associated with an address, a customer name, and
other optional attributes (e.g., tax id) that are typically empty. To
exploit all available information, the quadratic computational cost
of ER is reduced through schema-agnostic blocking. Our goal is
to minimize the set of candidate pairs, using Supervised Meta-
blocking, while restricting human involvement for the generation
of the labelled instances. To this end, we go beyond Supervised
Meta-blocking in the following ways:

•We generalize it from a binary classi�cation task to a binary
probabilistic classi�cation process (Section 3).

• The resulting probabilities are used as comparison weights, on
top of which we apply new pruning algorithms that are incompati-
ble with the original approach [25] (Section 4).

•To further improve their performance, we use three newweight-
ing schemes as features (Section 5).

•We perform an extensive experimental study that involves 9
real-world datasets. Its results demonstrate that the new pruning
algorithms signi�cantly outperform the existing ones. They also
identify the top performing algorithms and feature vectors, showing
that 50 labelled instances (25 per class) su�ce for high performance.

•We also perform a scalability analysis over 5 synthetic datasets
with up to 300,000 entities, proving that our approaches scale well
both with respect to e�ectiveness and time-e�ciency.

2 PRELIMINARIES
An entity pro�le 48 is de�ned as a set of name-value pairs, i.e., 48 =
{h= 9 , E 9 i}, where both the attribute names and the attribute values
are textual. This simple model is �exible and generic enough to
seamlessly accommodate a broad range of established data formats
– from the structured records in relational databases to the semi-
structured entity descriptions in RDF data [21]. Two entities, 48 and
4 9 , that describe the same real-world object are called duplicates
or matches, denoted by 48 ⌘ 4 9 . A set of entities is called entity
collection and is denoted by ⇢; . An entity collection ⇢; is clean if it
is duplicate-free, i.e., ö 48 , 4 9 2 ⇢; : 48 ⌘ 4 9 .

We distinguish Entity Resolution into two tasks [5, 7, 22]: (i)
Clean-Clean ER or Record Linkage receives as input two clean entity
collections, ⇢1 & ⇢2, and detects the duplicates⇡ between their enti-
ties,⇡ = {(48 , 4 9) ✓ ⇢1⇥⇢2 : 48 ⌘ 4 9 }; (ii) Dirty ER or Deduplication
receives as input a dirty entity collection and detects the duplicates
it contains, ⇡ = {(48 , 4 9) ✓ ⇢ ⇥ ⇢ : 8 < 9 ^ 48 ⌘ 4 9 }. The time com-
plexity is quadratic with respect to the input, i.e.,$ (|⇢1 |⇥ |⇢2 |) and
$ (|⇢ |2), resp., as every entity pro�le has to be compared with all
possible matches. To reduce this high computational cost, Blocking
restricts the search space to similar entities [5, 22].

Meta-blocking operates on top of Blocking, re�ning an existing
set of blocks ⌫, a.k.a. block collection, as long as it is redundancy-
positive. This means that every entity 48 participates into multiple
blocks (i.e., |⌫8 | � 1, where ⌫8 = {1 2 ⌫ : 48 2 1} denotes the set of
blocks containing 48), and the more blocks two entities share, the
more likely they are to be matching, because they share a larger
portion of their content. Such blocks emanate from Token, Q-Grams
and Su�x Arrays Blocking and their variants among others [20, 28].

The redundancy-positive block collections involve a large por-
tion of redundant comparisons, as the same pairs of entities are
repeated across di�erent blocks. These can be easily removed by ag-
gregating for every entity 48 2 ⇢1 the set of all entities from ⇢2 that
share at least one block with it [26]. The union of these individual
sets yields the distinct set of comparisons, which is called candi-
date pairs and is denoted by ⇠ . Every non-redundant comparison
between 48 and 4 9 , ci,j 2 C, belongs to one of the following types:

• Positive pair if 48 and 4 9 are matching: 48 ⌘ 4 9 .
• Negative pair if 48 and 4 9 are not matching: 48 . 4 9 .
These de�nitions are independent of Matching: two matching

(non-matching) entities are positive (negative) as long as they share
at least one block in ⌫ [5, 21]. The set of all positive and negative
pairs in a block collection ⌫ are denoted by %⌫ and #⌫ , respectively.
The goal of Meta-blocking is to transform a given block collection
⌫ into a new one ⌫0 such that |%⌫0 | ⇡ |%⌫ | and |#⌫0 | ⌧ |#⌫ |.

Supervised Meta-blocking models every pair 28, 9 2 ⇠ as a feature
vector 58, 9 = [B1 (28, 9), B2 (28, 9), ..., B= (28, 9)], where each B8 is a weight-
ing scheme score proportional to the matching likelihood of 28, 9 .
The feature vectors for all pairs in ⇠ are fed into a binary classi�er,
which labels them as positive or negative, if their entities are
highly likely to match or not. Its performance is assessed through:
(i) the true positive)% (⇠) and negative)# (⇠) pairs correctly clas-
si�ed as positive and negative, resp., and (ii) the incorrectly
classi�ed false positive �% (⇠) and negative �# (⇠) pairs.

Supervised Meta-blocking discards all candidate pairs labelled
as negative, i.e.,)# (⇠) [�# (⇠), retaining those belonging to

)% (⇠) [�% (⇠). A new block is created for every positive pair,
yielding the new block collection ⌫0. Thus, the e�ectiveness of Su-
pervised Meta-blocking is assessed through the following measures,
de�ned in [0, 1], with higher values indicating better performance:
• Recall, a.k.a. Pairs Completeness, expresses the portion of existing
duplicates that are retained: '4=|)% (⇠) |/|⇡ |=(|⇡ | � �# (⇠))/|⇡ |.
• Precision, a.k.a. Pairs Quality, is the portion of positive candidate
pairs that are matching: %A = |)% (⇠) |/(|)% (⇠) | + |�% (⇠) |).
• F-Measure is the harmonic mean of the two: �1=2·Re·Pr/(Re+Pr).

In this context, Supervised Meta-blocking is formalized as [25]:
Problem 1. Given the candidate pairs ⇠ of block collection ⌫, the
labels !={positive, negative} and a training set) = { h28,9 , ;: i : 28,9 2
⇠ ^ ;: 2 !}, Supervised Meta-blocking aims to learn a classi�cation
model" that minimizes the cardinality of �# (⇠) [�% (⇠) so that
the new block collection ⌫0 achieves much higher precision than ⌫,
%A (⌫0)�%A (⌫), but maintains the original recall, '4 (⌫0)⇡'4 (⌫).

The time e�ciency of Supervised Meta-blocking is assessed
through its running time, ') . This includes the time required to: (i)
generate the feature vectors for all candidate pairs in ⇠ , (ii) train
the classi�cation model" , and (iii) apply" to ⇠ .

Pruning algorithms. To address Problem 1, three pruning al-
gorithms were introduced in [25]: 1) The Binary Classi�er (BCl),
which simply retains all pairs classi�ed as positive.

2) Cardinality Edge Pruning (CEP), which retains the top-
weighted candidate pairs, where is set to half the sum of block
sizes in the input blocks ⌫, i.e., =

Õ
18 2⌫ |1 |/2, where |1 | stands for

the size of block 1, i.e., the number of entities it contains [23].
3) Cardinality Node Pruning (CNP), which adapts CEP to a local

operation, maintaining the top-: weighted candidates per entity,
where : amounts to the average number of blocks per entity: : =
<0G (1,Õ12⌫ |1 |/(|⇢1 | + |⇢2 |)) [23].

Weighting schemes. These algorithms were mostly combined
with the following schemes, which are schema-agnostic and generic
enough to cover any redundancy-positive block collection ⌫ [25]:

1) Co-occurrence Frequency-Inverse Block Frequency (CF-IBF). In-
spired from Information Retrieval’s TF-IDF, it assigns high scores
to entities that participate in few blocks, but co-occur in many:
⇠� -�⌫� (28, 9) = |⌫8 \ ⌫ 9 | · log |⌫ |/|⌫8 | · log |⌫ |/⌫ 9 |.

2) Reciprocal Aggregate Cardinality of Common Blocks (RACCB).
The smaller the blocks shared by a pair of candidates, the more dis-
tinctive information they have in common and, thus, the more likely
they are to be matching: '�⇠⇠⌫(28, 9) =

Õ
12⌫8\⌫ 9

1/| |1 | |, where
| |1 | | is the cardinality of block 1–the number of its candidate pairs.

3) Jaccard Scheme (JS). It expresses the portion of blocks shared
by a pair of candidates: �((28, 9) = |⌫8 \⌫ 9 |/(|⌫8 | + |⌫ 9 | � |⌫8 \⌫ 9 |).

4) Local Candidate Pairs (LCP). It measures the number of candi-
dates for a particular entity:!⇠% (48)=| |48 | |=|{4 9 : 8 < 9^|⌫8\⌫ 9 |>0}|.
The less candidates correspond to an entity, the more likely it is to
match with one of them. Entities with many candidates convey no
distinctive information, being unlikely for any match.

5) Enhanced Jaccard Scheme (EJS). Based on the same principle
as LCP, it enhances JS with the inverse frequency of an entity’s
candidates in ⇠: ⇢�((28, 9) = �((28, 9) · log |⇠ |/| |48 | | · log |⇠ |/| |4 9 | |.

The �rst four schemes formed the feature vector that achieves the
best balance between e�ectiveness and time e�ciency in [25]. LCP
appears twice in the feature vector of 28 9 , as LCP(48) and LCP(4 9).

3 PROBLEM DEFINITION
Generalized Supervised Meta-blocking is a new task that di�ers
from Supervised Meta-blocking in two ways: (i) instead of a binary
classi�er that assigns class labels, it trains a probabilistic classi�er
that assigns a weightF8, 9 2 [0, 1] to every candidate pair 28, 9 . This
weight expresses how likely it is to belong to the positive class. (ii)
The candidate pairs with a probability lower than 0.5 are discarded,
but the rest, called valid pairs, are further processed by a pruning
algorithm. The ones retained after pruning yield the new block
collection ⌫0, which contains a new block per retained valid pair.

Hence, the performance evaluation of Generalized Supervised
Meta-blocking relies on the following measures: (i))% 0(⇠), the
probabilistic true positive pairs, involve duplicates that are assigned
to a probability�0.5 and are retained after pruning; (ii) �% 0(⇠), the
probabilistic false positive pairs, entail non-matching entities, that
are assigned to a probability�0.5 and are retained by the pruning
algorithm. (iii))# 0(⇠), the probabilistic true negative pairs, entail
non-matching entities that are assigned to a probability<0.5 and are
discarded by the pruning algorithm. (iii) �# 0(⇠), the probabilistic
false negative pairs, comprise matching entities, that are assigned
to a probability<0.5 and are discarded by the pruning algorithm.

The measures of recall, precision and F-Measure are rede�ned
accordingly. In this context, the task of Generalized Supervised
Meta-blocking is formally de�ned as follows:
Problem 2. Given the candidate pairs ⇠ of block collection ⌫, the
labels !={positive, negative}, and a training set) = {h28, 9 , ;: i :
28, 9 2 ⇠ ^ ;: 2 !}, the goal of Generalized Supervised Meta-blocking
is to train a probabilistic classi�cation model" that assigns a weight
F8, 9 2 [0, 1] to every candidate pair 28, 9 2 ⇠ ; these weights are then
processed by a pruning algorithm so as to minimize the cardinality of
�# 0(⇠) [�% 0(⇠), yielding a new block collection ⌫0 that achieves
much higher precision than ⌫, %A (⌫0) � %A (⌫), while maintaining
the original recall, '4 (⌫0) ⇡ '4 (⌫).

The run-time of Generalized Supervised Meta-blocking, ') , adds
to that of Supervised Meta-blocking the time required to process
the assigned probabilities by a pruning algorithm.

4 PRUNING ALGORITHMS
To address Problem 2, our new supervised pruning algorithms
operate as follows: given a speci�c set of features, they train a
probabilistic classi�er on the labelled instances. Then, they apply
the trained classi�cation model" to each candidate pair, estimating
its classi�cation probability. If it exceeds 0.5, a threshold determines
whether the corresponding pair of entities will be retained or not.

Depending on the type of threshold, the pruning algorithms
are categorized into two types: (i) The weight-based algorithms
determine the weight(s), above which a comparison is retained. (ii)
The cardinality-based algorithms determine the number : of top-
weighted comparisons to be retained. In both cases, the determined
threshold is applied either globally, on all candidate pairs, or locally,
on the candidate pairs associated with every individual entity.

We de�ne the following four weight-based pruning algorithms:
1)Weighted Edge Pruning (WEP). It iterates over the set of can-

didate pairs ⇠ twice: �rst, it applies the trained classi�er to each
pair in order to estimate the average probability ?̄ of the valid ones.
Then, it applies again the trained classi�er to each pair and retains
only those pairs with a probability higher than ?̄

2)Weighted Node Pruning (WNP). It iterates twice over⇠ , too. Yet,
instead of a global average probability, it estimates a local average
probability per entity. It keeps in memory two arrays: one with
the sum of valid probabilities per entity and one with the number
of valid candidates per entity. They are populated during the �rst
iteration over⇠ and are used to compute the average probability per
entity. Finally,WNP iterates over⇠ and retains a pair 28, 9 only if its
probability ?8, 9 exceeds either of the related average probabilities.

3) Reciprocal Weighted Node Pruning (RWNP). The only di�er-
ence from WNP is that a comparison is retained if its classi�cation
probability exceeds both related average probabilities. This way, it
applies a consistently deeper pruning thanWNP.

4) BLAST. It is similar to WNP, but uses a di�erent pruning
criterion. Instead of the average probability per entity, it relies on
the maximum probability per entity. It stores these probabilities
in an array that is populated during the �rst iteration over ⇠ . The
second iteration over⇠ retains a valid pair 28, 9 if it exceeds a certain
portion A of the sum of the related maximum probabilities.

We also de�ne a new cardinality-based pruning algorithm: Recip-
rocal Cardinality Node Pruning (RCNP) performs a deeper pruning
than CNP by retaining only the candidate pairs that are among the
top-: weighted ones for both constituent entities.

Please refer to [12] for more detailed descriptions.

5 WEIGHTING SCHEMES
Among the features of [25], CF-IBF, JS and EJS rely on |⌫8 \ ⌫ 9 |,
the number of blocks shared by a candidate pair 28, 9 . In an e�ort
to ensure high distinctiveness, avoiding ties, CF-IBF couples this
number with a factor that discounts the contribution of 48 and/or
4 9 if they appear in many blocks, because such entities are typically
dominated by noisy, ambiguous text (e.g., stop words). JS normalizes
|⌫8 \ ⌫ 9 | by considering the total number of blocks containing 48
and 4 9 , while EJS extends it with another factor that considers the
distinctiveness of the textual information in an entity pro�le: the
number of candidate pairs per 48 and 4 9 . The higher this number is,
the less likely are 48 and 4 9 to match.

Another type of valuable matching evidence in redundancy-
positive block collections is the sum of the inverse cardinalities of
common blocks. RACCB assumes that the higher this sum is, the
more distinctive is the information shared by 48 and 4 9 , thus being
more likely to match. Unlike |⌫8 \ ⌫ 9 |, RACCB does not need to be
combined with any discount factor (as in CF-IBF and EJS), because
it produces highly distinctive scores. However, it considers only the
blocks shared by 48 and 4 9 , disregarding the contextual information
about the rest of the blocks that contain these two entities.

To address this issue, theWeighted Jaccard Scheme (WJS) normal-
izes RACCB with the cardinality of all blocks containing each en-

tity [1]:, �((28, 9) =
Õ

12⌫8\⌫9
1/ | |1 | |Õ

12⌫8 1/ | |1 | |+
Õ

12⌫9
1/ | |1 | |�Õ12⌫8\⌫9

1/ | |1 | | .WJS

promotes candidate pairs co-occurring in the most and smallest
blocks, sharing a larger portion of their distinctive textual content.

Another type of matching evidence in redundancy-positive block
collections, which has been overlooked in the literature, is the in-
verse size of common blocks. Similar to RACCB, the smaller the
common blocks are, the more likely are the corresponding candi-
date pairs to be matching. This is encapsulated by the Reciprocal
Sizes Scheme (RS) [1]: '((28, 9) =

Õ
12⌫8\⌫ 9

1/|1 |.

Table 1: The datasets used in the experimental study.
Dataset |E1 | |E2 | |D | |C | Recall Precision �1

(a)

AbtBuy 1.1k 1.1k 1.1k 36.7k 0.948 2.78·10�2 5.40·10�2
DblpAcm 2.6k 2.3k 2.2k 46.2k 0.999 4.81·10�2 9.18·10�2
ScholarDblp 2.5k 61.3k 2.3k 832.7k 0.998 2.80·10�3 5.58·10�3
AmazonGP 1.4k 3.3k 1.3k 84.4k 0.840 1.29·10�2 2.54·10�2
ImdbTmdb 5.1k 6.0k 1.9k 109.4k 0.988 1.78·10�2 3.50·10�2
ImdbTvdb 5.1k 7.8k 1.1k 119.1k 0.985 8.90·10�3 1.76·10�2
TmdbTvdb 6.0k 7.8k 1.1k 198.6k 0.989 5.50·10�3 1.09·10�2
Movies 27.6k 23.1k 22.8k 26.0M 0.976 8.59·10�4 1.72·10�3

WMAmazon 2.5k 22.1k 1.1k 27.4M 1.000 4.22·10�5 8.44·10�5

(b)

⇡10: 10k 8.7k 2.69·107 0.999 3.23·10�4 6.47·10�4
⇡50: 50k 43.1k 6.73·108 0.999 6.40·10�5 1.28·10�4
⇡100: 100k 85.5k 2.69·109 0.999 3.17·10�5 6.34·10�5
⇡200: 200k 172.4k 1.08·1010 1.000 1.60·10�5 3.19·10�5
⇡300: 300k 257.0k 2.43·1010 0.999 1.06·10�5 2.12·10�5

Similar to RACCB, RS is context-agnostic, considering exclu-
sively information from the common blocks of two entities. To
enhance it, the Normalized Reciprocal Sizes Scheme (NRS) extends
RS with the contextual information of all blocks containing the
constituent entities of a candidate pair [1]:

#'((28, 9) =
Õ

12⌫8\⌫9
1/ |1 |Õ

12⌫8 1/ |1 |+
Õ

12⌫9
1/ |1 |�Õ12⌫8\⌫9

1/ |1 | .

In general, the normalized weighting schemes yield more distinc-
tive features, because they encompass more information about a
given pair of candidate matches. Moreover, the size and cardinality
of blocks provide more distinctive information about 48 and 4 9 than
the mere number of blocks they share. For this reason, the new fea-
tures (i.e.,, �(, '(and #'() are expected to enhance signi�cantly
the performance of the pruning algorithms.

6 EXPERIMENTAL EVALUATION
Hardware and Software. All the experiments were performed
on a machine equipped with four Intel Xeon E5-2697 2.40 GHz (72
cores), 216 GB of RAM, running Ubuntu 18.04. We employed the
SparkER library [13] to perform blocking and features generation.
Unless stated otherwise, we perform machine learning analysis
using Python 3.7 and the Support Vector Classi�cation (SVC) model
of scikit-learn [30], in particular. We used the default con�guration
parameters, enabling the generation of probabilities and �xing
the random state so as to reproduce the probabilities over several
runs. We performed all experiments with logistic regression, too,
obtaining almost identical results, but we omit them for brevity.

Datasets. Table 1a lists the 9 real-world datasets employed in our
experiments (|⇢G | stands for the number of entities in an entity col-
lection, |⇡ | for the number of duplicate pairs). They have di�erent
characteristics and cover a variety of domains. Each dataset involves
two di�erent, but overlapping data sources, where the ground truth
of the real matches is known. AbtBuy matches products extracted
fromAbt.com and Buy.com [18]. DblpAcmmatches scienti�c articles
extracted from dblp.org and dl.acm.org [18]. ScholarDblpmatches
scienti�c articles extracted from scholar.google.com and dblp.org
[18]. ImdbTmdb, ImdbTvdb and TmdbTvdb match movies and TV
series extracted from IMDB, TheMovieDB and TheTVDB [19], as
suggested by their names. Moviesmatches information about �lms
that are extracted from imdb.com and dbpedia.org [21]. WMAmazon
matches products from Walmart.com and Amazon.com [8].

Blocking. To each dataset, we apply Token Blocking, the only
parameter-free redundancy-positive blocking method [28]. The
original blocks are then processed by Block Purging [21], which
discards all the blocks that contain more than half of all entity

pro�les in a parameter-free way. These blocks correspond to highly
frequent signatures (e.g., stop-words) that provide no distinguishing
information. Finally, we apply Block Filtering [26], removing each
entity 48 from the largest 20% blocks in which it appears.

The performance of the resulting block collections is reported
in Table 1a. We observe that in most cases, the block collections
achieve an almost perfect recall that signi�cantly exceeds 90%. The
only exception is AmazonGP, where some duplicate entities share
no infrequent attribute value token – the recall, though, remains
quite satisfactory, even in this case. Yet, the precision is consistently
quite low, as its highest value is lower than 0.003. As a result, F1
is also quite low, far below 0.1 across all datasets. These settings
undoubtedly call for Supervised Meta-blocking.

To apply Generalized Supervised Meta-blocking to these block
collections, we performed 10 runs and averaged the values of preci-
sion, recall, and F1. In each run, a di�erent seed is used to sample
the pairs that compose the training set. Using undersampling, we
formed a balanced training set per dataset that comprises 500 la-
belled instances. Due to space limitations, we mostly report the
average performance of every approach over the 9 block collections.

Pruning Algorithm Selection. We now investigate which are
the best-performing weight- and cardinality-based pruning algo-
rithms for Generalized Supervised Meta-blocking among those dis-
cussed in Section 4. As baseline methods, we employ the pruning
algorithms proposed in [25]: the binary classi�er BCl for weight-
based algorithms as well as CEP and CNP for the cardinality-based
ones. We �xed the training set size to 500 pairs and used the feature
vector proposed in [25] as optimal; every candidate pair 28, 9 is repre-
sented by the vector: {⇠� -�⌫� (28,9),'�⇠⇠⌫ (28,9), � ((28,9),!⇠% (48),
!⇠% (4 9) }. Based on preliminary experiments, we set the pruning
ratio of BLAST to A=0.35. The average e�ectiveness measures of
the weight- and cardinality based algorithms across the 9 block
collections of Table 1a are reported in Tables 2a and b, respectively.

Among the weight-based algorithms, we observe that the new
pruning algorithms trade slightly lower recall for signi�cantly
higher precision and F1. Comparing BCl with WEP, recall drops
by -5.9%, while precision raises by 60.8% and F1 by 42.9%. This
pattern is more intense in the case of RWNP, which reduces recall
by -7.2%, increasing precision by 68.5% and F1 by 46.3%. These
two algorithms actually monopolize the highest F1 scores in every
case: for ImdbTmdb, ImdbTvdb and TmdbTvdb,WEP ranks �rst with
RWNP second and vice versa for the rest of the datasets. Their
aggressive pruning, though, results in very low recall (⌧0.8) in four
datasets. E.g., in the case of AbtBuy, BCl’s recall is 0.852, but WEP
and RWNP reduce it to 0.755 and 0.699, respectively.

The remaining algorithms are more robust with respect to recall.
Compared to BCl, WNP reduces recall by just -0.2%, while increas-
ing precision by 26.8% and F1 by 19.7%. Yet, BLAST outperforms
WEP with respect to all e�ectiveness measures: recall, precision
and F1 raise by 1.3%, 13.8% and 11.5%, respectively. This means that
BLAST is able to discard much more non-matching pairs, while
retaining a few more matching ones, too.

Among the cardinality-based algorithms, we observe that RCNP
is a clear winner, outperforming both CEP and CNP. Compared to
the former, it reduces recall by -1.1%, while increasing precision by
44% and F1 by 34.4%; compared to the latter, recall drops by -3.5%,
but precision and F1 raise by 37.5% and 29.3%, respectively.

Table 2: The average performance of all pruning algorithms
over the block collections of Table 1.

Alg. Recall Precision F1 Alg. Recall Precision F1

BCl .8673 .1700 .2559 CEP .8632 .1744 .2639
WEP .8163 .2734 .3656 CNP .8854 .1827 .2743
WNP .8659 .2156 .3063 RCNP .8513 .2434 .3484
RWNP .8047 .2864 .3744
BLAST .8784 .1936 .2852
(a) weight-based pruning algorithms (b) cardinality-based pruning algorithms

Table 3: The 10 feature sets with the highest F1 per algorithm.
ID Feature set Recall Pre- F1 RT (minutes)

cision Movies WMAm.

72 {CF-IBF, RACCB, JS, RS} .8816 .1932 .2892 2.73 2.96
74 {CF-IBF, RACCB, JS, NRS} .8816 .1932 .2892 2.48 2.99
75 {CF-IBF, RACCB, JS, WJS} .8816 .1932 .2892 2.44 2.86
78 {CF-IBF, RACCB, RS, NRS} .8816 .1932 .2892 2.15 2.37
79 {CF-IBF, RACCB, RS, WJS} .8816 .1932 .2892 2.52 2.83
82 {CF-IBF, RACCB, NRS, WJS} .8816 .1932 .2892 2.47 2.83
86 {CF-IBF, JS, RS, WJS} .8816 .1932 .2892 2.52 3.01
89 {CF-IBF, JS, NRS, WJS} .8816 .1932 .2892 2.49 3.00
96 {CF-IBF, RS, NRS, WJS} .8816 .1932 .2892 2.52 2.82
190 {CF-IBF, RACCB, JS, RS, NRS, WJS} .8816 .1932 .2892 2.57 3.21

(a) BLAST
184 {CF-IBF, RACCB, JS, LCP, RS} .8489 .2463 .3527 6.41 11.13
187 {CF-IBF, RACCB, JS, LCP, WJS} .8490 .2464 .3526 6.20 10.35
193 {CF-IBF, RACCB, LCP, RS, NRS} .8490 .2463 .3526 6.46 11.18
200 {CF-IBF, JS, LCP, RS, NRS} .8488 .2474 .3526 6.60 11.66
227 {CF-IBF, RACCB, JS, LCP, RS, NRS} .8493 .2473 .3537 6.63 12.22
228 {CF-IBF, RACCB, JS, LCP, RS, WJS} .8494 .2473 .3537 6.46 11.51
231 {CF-IBF, RACCB, JS, LCP, NRS, WJS} .8496 .2473 .3537 6.68 11.04
235 {CF-IBF, RACCB, LCP, RS, NRS, WJS} .8496 .2473 .3536 6.57 11.00
239 {CF-IBF, JS, LCP, RS, NRS, WJS} .8494 .2473 .3534 6.50 10.87
250 {CF-IBF, RACCB, JS, LCP, RS, NRS, WJS} .8502 .2479 .3542 6.51 11.27

(b) RCNP

Table 4: BLAST&RCNPvs best existing algorithms, BCl&CNP.
Algorithm Recall Precision F1 ') (Movies) ') (WMAmazon)

BCl 0.8673 0.1700 0.2559 7.11 min. 10.67 min.
BLAST 0.8816 0.1932 0.2892 3.32 min. 3.37 min.
CNP 0.8858 0.1827 0.2639 7.53 min. 10.93 min.
RCNP 0.8490 0.2464 0.3526 7.01 min. 11.11 min.

Overall, RCNP constitutes the best choice for cardinality-based
pruning algorithms, which are crafted for applications that promote
precision at the cost of slightly lower recall [23, 26]. BLAST is the best
among the weight-based pruning algorithms, which are crafted for
applications that promote recall at the cost of slightly lower precision
[23, 26]. Note that their F1 is signi�cantly higher than the original
ones in Table 1a, but still far from perfect. The reason is that (Su-
pervised) Meta-blocking merely produces a new block collection,
not the end result of ER. This block collection is then processed by
a Matching algorithm, whose goal is to raise F1 close to 1.

Feature selection.We now �ne-tune the selected algorithms,
BLAST and RCNP, by identifying the feature sets that optimize
their performance in terms of e�ectiveness and time-e�ciency. We
adopted a brute force approach, trying all the possible combinations
of the eight features presented in Sections 2 and 5. Fixing again the
training set size to a random sample of 500 balanced instances, the
top-10 feature vectors with respect to F1 for BLAST and RCNP are
reported in Tables 3a and b, respectively.

We observe that both algorithms are robust with respect to
the top-10 feature sets, as they all achieve practically identical
performance, on average. For BLAST, we obtain recall=0.882, pre-
cision=0.193 and F1=0.289 when combining ⇠� -�⌫� and '�⇠⇠⌫
with any two features from 5 ={�(, '(, #'(,, �(}; even '�⇠⇠⌫
can be replaced with a third feature from 5 without any noticeable
impact. For RCNP, we obtain recall=0.850, precision=0.248 and

F1=0.353 when combining ⇠� -�⌫� , '�⇠⇠⌫ and !⇠% with any pair
of features from {�(, '(, #'(,, �(}. In this context, we select the
best feature set for each algorithm based on time e�ciency.

In more detail, we compare the top-10 feature sets per algorithm
in terms of their running times. This includes the time required
for calculating the features per candidate pair and for retrieving
the corresponding classi�cation probability (we exclude the time
required for producing the new block collections, because this is a
�xed overhead common to all feature sets of the same algorithm).
Due to space limitations, we consider only the two datasets with the
most candidate pairs, as reported in Table 1a: Movies and WMAmazon.
We repeated every experiment 10 times and took the mean time.

In Table 3a, we observe that the feature set 78 is consistently
the fastest one for BLAST, exhibiting a clear lead. Compared to the
second fastest feature sets over movies (75) and WMAmazon (96), it
reduces the average run-time by 11.9% and 16.0%, respectively. For
RCNP, the di�erences are much smaller, yet the same feature set
(187) achieves the lowest run-time over both datasets. Compared
to the second fastest feature sets over movies (184) and WMAmazon
(239), it reduces the average run-time by 3.3% and 4.8%, respectively.

Overall, BLAST models each candidate pair as the 4-dimensional
feature vector (ID 78 in Table 3a): {⇠� -�⌫� ,'�⇠⇠⌫,'(,#'(}. Com-
pared to the feature set of [25], recall raises by ⇠0.5% and F1 by ⇠1.5%,
while the run-time is reduced to a signi�cant extent (>50% as ex-
plained below), due to the absence of the time-consuming !⇠% feature.
RCNP represents every candidate pair with the 5-dimensional feature
vector (ID 187 in Table 3b): {⇠� -�⌫� ,'�⇠⇠⌫, �(, !⇠%,, �(}. This
reduces recall by <0.3%, but raises precision and F-Measure by 1.2%,
which is in-line with the desiderata of cardinality-based algorithms.

Comparison with Supervised Meta-blocking [25].We now compare
BLAST and RCNP in combination with the features selected above
with BCl and CNP, which use the feature set proposed in [25],
{⇠� -�⌫� ,'�⇠⇠⌫, �(, !⇠%}. All algorithms were trained over the
same randomly selected set of 500 labeled instances, 250 from each
class, and were applied to all datasets in Table 1a. Their average
performance is presented in Table 4.

We observe that BLAST outperforms BCl with respect to all ef-
fectiveness measures: its recall, precision and F1 are higher by 1.6%,
13.6% and 13%, respectively, on average. Thus, BLAST is much more
accurate in the classi�cation of the candidate pairs and more suitable
than BCl for recall-intensive applications. Among the cardinality-
based algorithms, RCNP trades slightly lower recall than CNP for
signi�cantly higher precision and F1: on average, across all datasets,
its recall is lower by -4.1%, while its precision and F1 are higher by
34.9% and by 33.6%, respectively. As a result, RCNP is more suitable
than CNP for precision-intensive applications.

Regarding the running times of these algorithms on the largest
datasets, i.e., Movies and WMAmazon, we observe that BCl, CNP and
RCNP exhibit similar ') in both cases, since they all employ more
complex feature sets that include the time-consuming feature !⇠% .
BLAST is substantially faster than these algorithms, reducing ')
by more than 50%. In particular, comparing it with its weight-based
competitor, we observe that BLAST is faster than BCl by 2.1 times
over Movies and by 3.2 times over WMAmazon.

The e�ect of training set size. We now explore how the per-
formance of BLAST and RCNP changes when varying the training
set size. We used the features sets selected above (ID 78 and 187

Figure 5: The e�ect of the training set size on BLAST.

Figure 6: The e�ect of the training set size on RCNP.

in Tables 3a and b, respectively) and varied the number of labelled
instances starting from 20, then from 50 to 500 with a step of 50.
Figures 5 and 6 report the results in terms of recall, precision and F1,
on average across all datasets, for BLAST and RCNP, respectively.

Notice that both algorithms exhibit the same behavior: as the
training set size increases, recall gets higher at the expense of lower
precision and F1. However, the increase in recall is much lower
than the decrease in the other two measures. More speci�cally,
comparing the largest training set size with the smallest one, the
average recall of BLAST raises by 2.4%, while its average precision
drops by 29.7% and its average F1 by 24.8%. Similar patterns apply
to RCNP: recall raises by 2.1%, but precision and F1 drop by 17.8%
and 16.8%, respectively, when increasing the labelled instances from
50 to 500. This might seem counter-intuitive, but is caused by the
distribution of matching probabilities: for small training sets, these
probabilities are relatively evenly distributed in [0.5, 1, 0], but for
larger ones, they are concentrated in higher scores, closer to 1.0,
while the pruning threshold remains practically stable. As a result,
more true and false positives exceed the threshold with the increase
in the training set size, as explained in detail in [12].

Given that 20 labelled instances yield very low recall, especially
for RCNP, but with 50 instances, the recall becomes quite satisfac-
tory for both algorithms (�0.85, on average, across all datasets), we
can conclude that the optimal training set involves just 50 labelled
instances, equally split among positive and negative ones.

Comparison with Supervised Meta-blocking [25]. Table 5a-c re-
ports a full comparison between the main weight-based algorithms,
i.e., BLAST and BCl (note that BCl2 uses the training set speci�ed in
[25], i.e., a random sample involving 5% of the positive instances in
the ground-truth along with an equal number of randomly selected
negative instances). We observe that on average, BLAST outper-
forms BCl2 with respect to all e�ectiveness measures, increasing
the average recall, precision and F1 by 7.1%, 5.0% and 9.9%, respec-
tively. Compared to BCl1, BLAST increases the average recall by
3.95%, at the cost of slightly lower precision and F1 (5.9% and 2.2%,
respectively). Recall drops below 0.8 in four datasets for BCl1 (and
BCl2), whereas BLAST violates this limit in just two datasets. This
should be attributed to duplicate pairs that share just one block in
the original block collection, due to missing or erroneous values, as

Table 5: Performance of the main weight- and cardinality-based
algorithms across all datasets in a-c and d-f, respectively. ') is the
mean run-time (in seconds) over 10 repetitions.

Abt Dblp Scholar Amazon Imdb Imdb Tmdb Movies Walmart
Buy Acm Dblp GP Tmdb Tvdb Tvdb Amazon

'4 0.8345 0.9511 0.9638 0.7001 0.8223 0.7483 0.8466 0.9151 0.9587
%A 0.2037 0.6509 0.3418 0.1441 0.5756 0.2304 0.2477 0.1300 0.0025
�1 0.3265 0.7690 0.4988 0.2385 0.6726 0.3456 0.3770 0.2221 0.0050
') 6.58 5.62 11.90 6.83 6.46 6.36 7.51 96.01 107.82

(a) BLAST with 50 labelled pairs and {⇠� -�⌫� ,'�⇠⇠⌫,'(,#'(}
'4 0.8345 0.9521 0.9588 0.6265 0.7889 0.6966 0.6972 0.9039 0.9500
%A 0.1821 0.5971 0.3595 0.1607 0.6445 0.2616 0.3737 0.0972 0.0020
�1 0.2981 0.7303 0.5195 0.2572 0.7086 0.3785 0.4613 0.1735 0.0041
') 5.40 5.66 10.51 6.02 5.79 5.49 6.69 82.71 107.51

(b) BCl1 with 50 labelled pairs and {⇠� -�⌫� ,'�⇠⇠⌫,'(,#'(}
'4 0.8183 0.9513 0.9303 0.7316 0.7872 0.7074 0.8172 0.9100 0.5757
%A 0.2039 0.6130 0.3921 0.1131 0.5969 0.2323 0.2312 0.0239 0.0001
�1 0.3261 0.7425 0.5401 0.1908 0.6604 0.3395 0.2991 0.0465 0.0001
') 15.07 9.37 27.73 13.22 11.04 9.68 10.86 1,328.81 276.19
(c) BCl2 with the training set and the features of [25], i.e., {⇠� -�⌫� ,'�⇠⇠⌫, � (,!⇠% }
'4 0.8405 0.9759 0.9623 0.7358 0.8395 0.7465 0.8696 0.9275 0.9122
%A 0.1764 0.6463 0.3591 0.1264 0.3540 0.2325 0.1848 0.0992 0.0050
�1 0.2914 0.7747 0.5190 0.2148 0.4971 0.3498 0.2954 0.1758 0.0100
') 6.20 5.67 11.73 6.83 6.55 6.77 8.32 126.13 107.56

(d) RCNP with 50 labelled pairs and {⇠� -�⌫� ,'�⇠⇠⌫, � (,!⇠%,, �(}
'4 0.8294 0.9613 0.9218 0.7462 0.8045 0.7615 0.8641 0.8200 0.7087
%A 0.1797 0.5984 0.3745 0.1031 0.5471 0.1867 0.1720 0.0090 0.0002
�1 0.2939 0.7355 0.5095 0.1748 0.6394 0.2847 0.2487 0.0177 0.0004
') 5.95 5.80 11.33 6.40 5.91 6.19 6.89 122.72 107.62

(e) CNP1 with 50 labelled pairs and {⇠� -�⌫� ,'�⇠⇠⌫, � (,!⇠%,, �(}
'4 0.8347 0.9539 0.9581 0.7742 0.8345 0.7641 0.8677 0.9347 0.2332
%A 0.1895 0.6158 0.2184 0.0848 0.4132 0.1764 0.1484 0.0291 0.0001
�1 0.3081 0.7457 0.3453 0.1514 0.5247 0.2754 0.2363 0.0564 0.0002
') 15.61 9.64 28.51 13.63 11.37 9.99 11.41 1,351.54 365.03
(f) CNP2 with the training set and the features of [25], i.e., {⇠� -�⌫� ,'�⇠⇠⌫, � (,!⇠% }

explained in detail in [12]. BCl1 outperforms BCl2 in all respects,
demonstrating the e�ectiveness of the new feature set.

In terms of run-time, BLAST is slower than BCl1 by 8.2%, on
average, because it iterates once more over all candidate pairs.
Compared to BCl2, BLAST is 6.7 times faster, on average across all
datasets, because of !⇠% and of the large training sets, which learn
complex binary classi�ers with a time-consuming processing.

Regarding the cardinality-based algorithms, we observe in Table
5d-f that RCNP typically outperforms both baseline methods with
respect to all e�ectiveness measures. Compared to CNP1 (CNP2),
RCNP raises the average recall by 5.3% (9.2%), while achieving the
highest precision and F1 across all datasets, except for AbtBuy and
ImdbTmdb (and ScholarDblp in the case of CNP1). The relative
increase in precision in comparison CNP1 to ranges from 7.5% over
TmdbTvdb to 10 and 24 times over Movies and WalmartAmazon,
respectively. Compared to CNP2, precision raises from 5.0% over
DblpAcm to 49 times over WalmartAmazon. In all cases, F1 increases
to a similar extent. These patterns suggest that RCNP is typically
more accurate in classifying the positive candidate pairs.

In terms of run-time, RCNP is slower than CNP1 by 6.2%, on
average, as it retains the candidate pairs that are among the top-
k weighted ones for both constituent entities (i.e., it searches for
pairs in two lists), whereas CNP1 simply merges the lists of all
entities. CNP2 employs a much larger training set, yielding more
complicated and time-consuming classi�ers than RCNP, which is 3
times faster, on average, across all datasets.

Overall, Generalized Supervised Meta-blocking outperforms Super-
vised Meta-blocking to a signi�cant extent, despite using a balanced
training set of just 50 labelled instances.

ScalabilityAnalysis.Weassess the scalability of our approaches
as the number of candidate pairs |⇠ | increases, verifying their ro-
bustness under versatile settings: instead of real-world Clean-Clean

Figure 7: Scalability over the datasets in Table 1b: (a) the weight-based pruning algorithms, (b) the cardinality-based ones, and (c) speedup.

ER datasets, we now consider the synthetic Dirty ER datasets, and
instead of SVC, we train our models using Weka’s default imple-
mentation of Logistic Regression [17].

The characteristics of the datasets, which are widely used in
the literature [5, 28], appear in Table 1b. To extract a large block
collection from every dataset, we apply Token Blocking. In all cases,
the recall is almost perfect, but precision and F1 are extremely low.

We consider four methods: BCl and CNP with the features and
the training set size speci�ed in [25] as well as BLAST and RCNP
with the features in Tables 5a and 5d, resp., trained over 50 la-
belled instances (25 per class). In each dataset, we performed three
repetitions per algorithm and considered the average performance.

The e�ectiveness of theweight- and cardinality-based algorithms
over all datasets appear in Figures 7a and 7b, respectively. BLAST
signi�cantly outperforms BCl in all cases: on average, it reduces
recall by 3.5%, but consistently maintains it above 0.93, while in-
creasing precision and F1 by a whole order of magnitude. Note that
BLAST’s precision is much higher than expected over ⇡100 , due
to the e�ect of random sampling: a di�erent training set is used in
every one of the three iterations, with two of them performing a
very deep pruning, for a minor decrease in recall.

RCNP outperforms CNP to a signi�cant extent: on average, it
reduces recall by 7.9%, but maintains it to very high levels – except
for ⇡200 , where it drops to 0.77, due to the e�ect of random sam-
pling; yet, precision raises by 2.8 times and F1 by 2.3 times. These
results verify the strength of our approaches, even though they
require orders of magnitude less labelled instances than [25].

Most importantly, our approaches scale better to large datasets,
as demonstrated by speedup in Figure 7c. Given two sets of can-
didate pairs, |⇠1 | and |⇠2 |, such that |⇠1 | < |⇠2 |, this measure is
de�ned as follows: B?443D? = |⇠2 |/|⇠1 |⇥')1/')2, where ')1 (')2)
denotes the running time over |⇠1 | (|⇠2 |) – in our case, ⇠1 corre-
sponds to ⇡10 and ⇠2 to all other datasets. In essence, speedup
extrapolates the running time of the smallest dataset to the largest
one, with values close to 1 indicating linear scalability, which is the
ideal case. We observe that all methods start from very high values,
but BCl and CNP deteriorate to a signi�cantly larger extent than
BLAST and RCNP, respectively, achieving the lowest values for
⇡300 . This should be attributed to their lower accuracy in pruning
the non-matching comparisons, which deteriorates as the number
of candidate pairs increases. As a result, they end up retaining and
processing a much larger number of comparisons, which slows
down their functionality.

Overall, Generalized Supervised Meta-blocking scales much better
to large datasets than Supervised Meta-blocking [25] for both weight-
and cardinality-based algorithms. For a bit lower recall, it raises
precision and F1 by �2 times and maintains a much higher speedup.

7 RELATEDWORK
The unsupervised pruning algorithmsWEP,WNP, CEP, and CNP
were introduced in [23].WNP and CNP were rede�ned in [26] so
that they do not produce block collections with redundant com-
parisons. Unsupervised Reciprocal WNP and Reciprocal CNP were
coined in [26], while unsupervised BLAST was proposed in [31].

Over the years, more unsupervised pruning algorithms have
been proposed in the literature. [36] proposes a variant of CEP that
retains the top-weighted candidate pairs with a cumulative weight
higher than a speci�c portion of the total sum of weights. Crafted
for Semantic Web data, MinoanER [11] combines meta-blocking
evidence from two complementary block collections: the blocks
extracted from the names of entities and from the attribute values
of their neighbors. BLAST2 [2] leverages loose schema information
in order to boost the performance of Meta-blocking’s weighting
schemes. Finally, a family of pruning algorithms that focuses on
the comparison weights inside individual blocks is presented in [9].
Our approaches can be generalized to these algorithms, too, but
their analytical examination lies out of our scope.

The above works consider Meta-blocking in a static context that
ignoresMatching. A dynamic approach that leveragesMeta-blocking
is pBlocking [16]. After applying Matching to the smallest blocks,
intersections of the initial blocks are formed and scored based on
their ratio of matching and non-matching entities. Meta-blocking
is then applied to produce a new set of candidates to be processed
by Matching. This process is iteratively applied until convergence.
BEER [15] is an open-source implementation of pBlocking.

On another line of research, BLOSS [3] introduces an active learn-
ing approach that reduces the size of the labelled set required by Su-
pervised Meta-blocking. It partitions the unlabelled candidate pairs
into similarity levels based on CF-IBF, it applies rule-based active
sampling inside every level and cleans the labelled sample from non-
matching outliers with high Jaccard weight. Our approaches render
BLOSS unnecessary, as they require just 50 labelled instances.

8 CONCLUSIONS
We presented Generalized Supervised Meta-blocking, which casts
Meta-blocking as a probabilistic binary classi�cation task andweigh-
ts all candidate pairs in a block collection through a trained proba-
bilistic classi�er. Its weights are processed by pruning algorithms
that are weight-based, promoting recall, or cardinality-based, pro-
moting precision. BLAST and RCNP constitute the best algorithms,
resp. We showed that four new weighting schemes give rise to fea-
ture sets that outperform the existing ones [25], while a very small,
balanced training set with just 50 labelled instances su�ces for
high e�ectiveness, high time e�ciency and high scalability. In the
future, we will apply our approaches to Progressive ER [29, 33–35].

REFERENCES
[1] N. Augsten, R. Kwitt, M. Lissandrini, W. Mann, T. Palpanas, and G. Papadakis.

2021. New Weighting Schemes for Meta-blocking. Technical Report LIPADE-TR
5. Laboratoire d’Informatique PAris DEscartes (LIPADE). Available at http:
//lipade.mi.parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf.

[2] Domenico Beneventano, Sonia Bergamaschi, Luca Gagliardelli, and Giovanni
Simonini. 2020. BLAST2: An E�cient Technique for Loose Schema Information
Extraction from Heterogeneous Big Data Sources. ACM J. Data Inf. Qual. 12, 4
(2020), 18:1–18:22.

[3] Guilherme Dal Bianco, Marcos André Gonçalves, and Denio Duarte. 2018. BLOSS:
E�ective meta-blocking with almost no e�ort. Inf. Syst. 75 (2018), 75–89.

[4] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer.

[5] Peter Christen. 2012. A Survey of Indexing Techniques for Scalable Record
Linkage and Deduplication. TKDE 24, 9 (2012), 1537–1555.

[6] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-End Entity Resolution for
Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1–127:42. https://doi.org/10.1145/
3418896

[7] Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. 2015. Entity
Resolution in the Web of Data. Morgan & Claypool.

[8] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap
Konda, Yash Govind, and Derek Paulsen. [n.d.]. The Magellan Data Repository.
https://sites.google.com/site/anhaidgroup/projects/data.

[9] Dimas Cassimiro do Nascimento, Carlos Eduardo Santos Pires, and
Demetrio Gomes Mestre. 2020. Exploiting block co-occurrence to control block
sizes for entity resolution. Knowl. Inf. Syst. 62, 1 (2020), 359–400.

[10] Xin Luna Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan &
Claypool Publishers.

[11] Vasilis Efthymiou, George Papadakis, Kostas Stefanidis, and Vassilis
Christophides. 2019. MinoanER: Schema-Agnostic, Non-Iterative, Mas-
sively Parallel Resolution of Web Entities. In EDBT. 373–384.

[12] Luca Gagliardelli, George Papadakis, Giovanni Simonini, Sonia Bergamaschi, and
Themis Palpanas. 2022. Generalized Supervised Meta-blocking (Extended Version).
Technical Report. Available at http://arxiv.org/abs/2204.08801.

[13] Luca Gagliardelli, Giovanni Simonini, Domenico Beneventano, and Sonia Berga-
maschi. 2019. SparkER: Scaling Entity Resolution in Spark. In EDBT. 602–605.

[14] Luca Gagliardelli, Giovanni Simonini, and Sonia Bergamaschi. 2020. RulER: Scal-
ing Up Record-level Matching Rules. In EDBT. OpenProceedings.org, 611–614.
https://doi.org/10.5441/002/edbt.2020.76

[15] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2021.
BEER: Blocking for E�ective Entity Resolution. In SIGMOD. 2711–2715.

[16] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2021.
E�cient and e�ective ER with progressive blocking. VLDB J. 30, 4 (2021), 537–
557.

[17] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[18] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. PVLDB 3, 1-2 (2010),
484–493.

[19] Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. 2021. EAGER:
Embedding-Assisted Entity Resolution for Knowledge Graphs. arXiv preprint
arXiv:2101.06126 (2021).

[20] George Papadakis, George Alexiou, George Papastefanatos, andGeorgia Koutrika.
2015. Schema-agnostic vs Schema-based Con�gurations for Blocking Methods
on Homogeneous Data. PVLDB 9, 4 (2015), 312–323.

[21] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederée, and
Wolfgang Nejdl. 2012. A blocking framework for entity resolution in highly
heterogeneous information spaces. TKDE 25, 12 (2012), 2665–2682.

[22] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.
2021. The Four Generations of Entity Resolution. Morgan & Claypool Publishers.
https://doi.org/10.2200/S01067ED1V01Y202012DTM064

[23] George Papadakis, Georgia Koutrika, Themis Palpanas, and Wolfgang Nejdl.
2014. Meta-Blocking: Taking Entity Resolution to the Next Level. TKDE 26, 8
(2014), 1946–1960.

[24] George Papadakis, GeorgiosM.Mandilaras, Luca Gagliardelli, Giovanni Simonini,
Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Pal-
panas, and Manolis Koubarakis. 2020. Three-dimensional Entity Resolution with
JedAI. Inf. Syst. 93 (2020), 101565. https://doi.org/10.1016/j.is.2020.101565

[25] George Papadakis, George Papastefanatos, and Georgia Koutrika. 2014. Super-
vised meta-blocking. PVLDB 7, 14 (2014), 1929–1940.

[26] George Papadakis, George Papastefanatos, Themis Palpanas, and Manolis
Koubarakis. 2016. Scaling entity resolution to large, heterogeneous data with
enhanced meta-blocking.. In EDBT. 221–232.

[27] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM
Comput. Surv. 53, 2 (2020), 31:1–31:42. https://doi.org/10.1145/3377455

[28] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. 2016.
Comparative Analysis of Approximate Blocking Techniques for Entity Resolu-
tion. PVLDB 9, 9 (2016), 684–695.

[29] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. 2015. Progressive Du-
plicate Detection. IEEE Trans. Knowl. Data Eng. 27, 5 (2015), 1316–1329.

[30] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[31] Giovanni Simonini, Sonia Bergamaschi, and H. V. Jagadish. 2016. BLAST: a
Loosely Schema-aware Meta-blocking Approach for Entity Resolution. PVLDB
9, 12 (2016), 1173–1184.

[32] Giovanni Simonini, Luca Gagliardelli, Sonia Bergamaschi, and H. V. Jagadish.
2019. Scaling entity resolution: A loosely schema-aware approach. Inf. Syst. 83
(2019), 145–165. https://doi.org/10.1016/j.is.2019.03.006

[33] Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi.
2019. Schema-Agnostic Progressive Entity Resolution. IEEE Trans. Knowl. Data
Eng. 31, 6 (2019), 1208–1221. https://doi.org/10.1109/TKDE.2018.2852763

[34] Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, and Felix Naumann.
2022. Entity Resolution On-Demand. PVLDB 15, 7 (2022), 1506–1518. https:
//doi.org/10.14778/3523210.3523226

[35] Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. 2013. Pay-
As-You-Go Entity Resolution. IEEE Trans. Knowl. Data Eng. 25, 5 (2013), 1111–
1124.

[36] Fulin Zhang, Zhipeng Gao, and Kun Niu. 2017. A pruning algorithm for meta-
blocking based on cumulative weight. In Journal of Physics, Vol. 887.

http://lipade.mi.parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf
http://lipade.mi.parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf
https://doi.org/10.1145/3418896
https://doi.org/10.1145/3418896
https://sites.google.com/site/anhaidgroup/projects/data
http://arxiv.org/abs/2204.08801
https://doi.org/10.5441/002/edbt.2020.76
https://doi.org/10.2200/S01067ED1V01Y202012DTM064
https://doi.org/10.1016/j.is.2020.101565
https://doi.org/10.1145/3377455
https://doi.org/10.1016/j.is.2019.03.006
https://doi.org/10.1109/TKDE.2018.2852763
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3523210.3523226

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Definition
	4 Pruning algorithms
	5 Weighting Schemes
	6 Experimental evaluation
	7 Related Work
	8 Conclusions
	References

