
Enhancing Loosely Schema-aware Entity Resolution
with User Interaction

Giovanni Simonini, Luca Gagliardelli, Song Zhu, Sonia Bergamaschi
Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia

Italy

Email: {giovanni.simonini;luca.gagliardelli;song.zhu;sonia.bergamaschi}@unimore.it

Abstract—Entity Resolution (ER) is a fundamental task of data
integration: it identifies different representations (i.e., profiles)
of the same real-world entity in databases. To compare all
possible profile pairs through an ER algorithm has a quadratic
complexity. Blocking is commonly employed to avoid that: profiles
are grouped into blocks according to some features, and ER
is performed only for entities of the same block. Yet, devising
blocking criteria and ER algorithms for data with highly schema
heterogeneity is a difficult and error-prone task calling for
automatic methods and debugging tools.

In our previous work, we presented Blast, an ER system that
can scale practitioners’ favorite Entity Resolution algorithms. In
current version, Blast has been devised to take full advantage of
parallel and distributed computation as well (running on top of
Apache Spark). It implements the state-of-the-art unsupervised
blocking method based on automatically extracted loose schema
information. We build on top of blast a GUI (Graphic User Inter-
face), which allows: (i) to visualize, understand, and (optionally)
manually modify the loose schema information automatically
extracted (i.e., injecting user’s knowledge in the system); (ii) to
retrieve resolved entities through a free-text search box, and to
visualize the process that lead to that result (i.e., the provenance).
Experimental results on real-world datasets show that these two
functionalities can significantly enhance Entity Resolution results.

Index Terms—Entity Resolution; Data Integration; Data Clean-
ing; Big Data

I. INTRODUCTION

With the increasing of the data (i.e. Big Data), data analysis

now drive every aspect of modern society and different tools

were proposed in order to integrate, search over and analyze

these huge amount of data [1] [2] [3] [4]. In this scenario

Entity Resolution (ER) plays a central role, since it is a

crucial and expensive task in data integration. ER is the

task of identifying different representations (called profiles)

of the same real-world entity in data sources. The naı̈ve all-

pairs comparison solution of ER is unmanageable with large

databases, thus blocking techniques are typically employed to

group similar records and limit the actual comparisons among

those records that appear together in block. For example, given

the dataset in Figure 1a (which is about people information),

the initials of the name attribute values might be employed as

keys to index profiles into blocks. Hence, all the profiles that

have the same initials (e.g., p2 and p3, which have “a.l.” as

initials) are placed together in block to be compared. However,

this blocking criterion fails to place together the matching

profiles p1 (initials: “b.d.”) and p3 (initials: “r.d.”).

A. Background

In a real world scenario, to identify a blocking criterion

(a.k.a. the blocking key) yielding high recall and precision

is a difficult and critical task [5], [6]. In fact, these schema-
aware techniques suffers of two main drawbacks when dealing

with big data: (i) they require schema alignment, which may

be very hard to achieve with data characterized by high

heterogeneity of schemata and formats; (ii) they require either

labeled data and classification algorithms, or domain experts to

select the attributes to combine. To overcome these limitations,

the schema-agnostic approach [7] has been proposed: it re-

nounces to exploit schema-information, treating profiles as bag
of words. For instance, schema-agnostic Standard Blocking

considers each token appearing in the value of a record as a

blocking key, regardless of the attribute in which it appears

(example in Figure 1b). This allows to minimize the number

of false negative due to the mismatches of schema attributes

or blocking key extraction.

However, schema-agnostic methods achieves generally low

precision. So, to mitigate this problem, they are typically

coupled with meta-blocking [7], [8], [9]. The goal of meta-

blocking is to restructure a blocking collection by removing

least promising comparisons. This is achieved in the following

way: profiles and comparisons are represented as nodes and

edges of a graph, respectively; then, each edge is weighted

on the basis of the co-occurrence of its adjacent nodes in the

original blocks; finally, a graph pruning algorithm retains only

the highest weighted edges involving each node.

Figure 1 illustrates a toy example of schema-agnostic block-

ing and meta-blocking.

B. Our Approach

We have proposed Blast [10], a novel approach to meta-

blocking, which goes beyond the bag-of-word model em-

ployed by the current state-of-the-art. Blast introduces the

idea of loose schema information extracted directly from

the data and exploited for both blocking and meta-blocking.

Loose schema information is composed of: (i) the attribute
partitioning, which is a surrogate of the schema matching

860

2018 International Conference on High Performance Computing & Simulation

978-1-5386-7879-4/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCS.2018.00138

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:54:38 UTC from IEEE Xplore. Restrictions apply.

(b)

Meta-Blocking

4

(c)

p1 p2

p3 p4

2

3

1 1
3

p1 p2

p3 p4

2

3

1 1
34

(c)

p1 p2

p3 p4

2

3

1 1
3

troy
p1 p3

str
p3 p4

Abraham
p1 p2
p3 p4

Abraham
p1 p2
p3 p4street

p1 p2
street
p1 p2 Lincoln

p2 p4

high
p2 p4
high

p2 p4

Doe
p1 p3

p1 p3
Hills

p1 p3
Hills

p3 p4
Rd

Blocking

(a)

 {
 "fullname": "Robert Doe",
 "ind": [
 {"A1": "Abraham str"},
 {"A2":"Troy Hills Rd"}
]
}

 {
 "fullname": "Lincoln Abraham",
 "ind": [
 {"A1": "high str"},
 {"A2":"Jeff. Rd"}
]
}

Dataset2

p3 p4p4

 {
 "fullname": "Robert Doe",
 "ind": [
 {"A1": "Abraham str"},
 {"A2":"Troy Hills Rd"}
]
}

 {
 "fullname": "Lincoln Abraham",
 "ind": [
 {"A1": "high str"},
 {"A2":"Jeff. Rd"}
]
}

Dataset2

p3 p4

Dataset1

Name Surname Home Work
p1 Bob Doe Abraham street Troy Hills
p2 Abraham Lincoln high street Jefferson Road

Fig. 1: Example of schema-agnostic (meta-)blocking process.
(a) A set of profiles P from an imaginary data lake. (b) The

set of blocks B derived applying schema-agnostic Standard

Blocking on P (i.e., each token is a blocking key). (c)

The blocking graph derived from the blocks of B, and the

effect of the pruning algorithm: dashed lines are the removed

comparisons, while red lines are the incorrectly retained ones.

For the sake of the example: each edge is weighted counting

the blocks that its adjacent profiles have in common, and

is retained if its weigh is above the average (more complex

weighting and pruning strategies are actually employed [10]).

employed to enhance a schema-agnostic blocking method;

and (ii) the attribute partition entropy, which captures the

importance of an attribute partition as blocking key.

The first basic intuition is that similar attributes will have

similar values if matching profiles are present in the dataset;

thus, this information can be exploited to produce blocking

keys. The second basic intuition is that the more unpredictable
are the values of an attribute, the lower is the probability that

two profile will have the same value for that particular attribute

by chance. (The unpredictability of an attribute is measured

through entropy.)

Figure 2 illustrates the effect of the loose schema informa-

tion on the toy example of Figure 1.

C. The Blast System.

Blast1 is a complete ER System built around the parallel and

distributed implementation of Blast [10] for Apache Spark.

Here we present the Blast User Interface, which provides func-

1https://github.com/Gaglia88/sparker

Loose schema
information

Name, Surname,
Fullname

Home, Work,
A1, A2

entropy =0.5

entropy = 0.2 p2 p4
Abraham_2

p2 p4
Abraham_2

p1 p3
Abraham_1

p1 p3
Abraham_1

p1 p2 p3
p4

Abraham
p1 p2 p3

p4

Abraham

(b)

Loose schema blocking

p1 p2

p3 p4

1.1

0.2

1.2

p1 p2

p3 p4

1.1

0.2

1.2

0.4

p1 p2

p3 p4

1.1

0.2

1.2

0.4

Loose
Meta-Blocking

C1

C2

(c)(a)

Fig. 2: Example of (meta-)blocking process employing loose
schema information. (a) The loose schema information ex-

tracted from the dataset in Figure 1a: the attribute partitioning

and the attribute partition entropies. Attributes referring to the

name of a person are grouped together, while all the other

attributes are grouped in another cluster (say that there is no

pair of attributes that have similar values at some extent). (b)

The attribute partitioning is employed to enhance Standard

Blocking: by using this information the token ”Abraham” is

split into two tokens (i.e., disambiguating ”Abraham” as a

street name, and ”Abraham” as person name). (c) The attribute

partition entropies are employed as multiplicative factors of

edge weights of Figure 1c to capture the importance of the co-

occurrence of two profiles in the blocks. This affects the meta-

blocking by helping to remove more superfluous comparisons

than those removed by the schema-agnostic blocking (the two

incorrectly retained edges of Figure 1c are now removed).

Entity Profiles
Loading

Loose
Schema

Extraction
Blocking Meta-

Blocking
Entity

Resolution

Datasets
management

Loose schema
editing

Entities
exploration

WebApp (graphic interface)

Fig. 3: Blast logical architecture.

tionalities that support practitioners in devising and debugging

an ER algorithm/workflow.

In the following Section II, we present the modules that

compose Blast, and the novel GUI. Finally, in Section III we

present experimental results showing how ER results can be

easily improved employing the Blast GUI.

II. ARCHITECTURE

Blast is organized in modules, each performing a specific

task, devised to be parallelizable on Apache Spark. These

modules are combined together in order to perform the ER

process, as outlined in Figure 3: firstly, the set of profiles is

861

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:54:38 UTC from IEEE Xplore. Restrictions apply.

loaded into a Spark RDD2; then, the loose-schema information

is extracted and employed by the blocking and meta-blocking

methods; finally, the candidate set of matching profiles are

actually compared (i.e., resolved) using an UDF (User Defined

Function) that takes as input two entity profiles and decides

whether they are matching or not, i.e., an ER algorithm (e.g.,

by calculating a similarity score and a similarity threshold).

A. Loose Schema Information Extractor

The loose-schema information automatically extracted is

composed by: the attribute partitioning and the attribute
partition entropies.

Attribute Partitioning. The aim of this operation is to parti-

tion together attributes that have similar values. To do that in

a fast and efficient manner, an algorithm based on Locality-
sensitive Hashing (LSH) is employed.

In details: firstly, LSH is applied to the attributes values,

in order to group them, according to their similarity. These

groups are overlapping, i.e., each attribute can co-occur with

different other attributes. Then, for each attribute only the most

similar one is kept in order to obtain pairs of similar attributes.

Finally, a transitive closure algorithm is applied, to guarantee

that each group of attributes, which are transitively obtained,

represent an attribute partitioning. All the attributes that have

not been partitioned, with any other attribute are put together

in a blob partition

Attribute Partition Entropy. Once the attribute partitions

have been generated, each partition is weighted to quantify

the relevance of blocking keys derived from the values of its

attributes. The Shannon entropy is employed to assess this rel-

evance. The intuition is that the more informative an attribute

is, the more effective are the blocking keys extracted from it.

Since each partition is composed by different attributes, their

entropies are aggregated, and the resulting value is assigned

as weight of the partition.

GUI for Loose Schema Information Exploration and
Editing. In [10], we have shown that by employing the

Blast approach for blocking and meta-blocking no human

intervention is required to achieve high quality results. Yet,

domain knowledge can be employed to refine the automatically

extracted loose schema information, so to enhance even further

the final ER results. Thus, Blast provides an intuitive user

interface to visualize and modify the loose schema informa-

tion. The GUI also provides free-text search functionalities

to conveniently retrieve desired attributes by their names, and

functionalities for sorting and filtering them by their entropies.

B. Blocking and Meta-Blocking

The blocking is performed using schema-agnostic blocking

techniques (e.g. Standard Blocking), but considering the loose

schema information. This allows to disambiguate blocking

keys according to the attribute group from which they are

2https://spark.apache.org

derived. An example is provided in Figure 2b. Each block

inherit the weight of the partition to which its attribute belongs.

Meta-blocking is performed taking into account the weight

assigned to each block, in particular, the χ2 test is employed

to measure the strength of co-occurrences. Then, each edge

weight is re-weighted according to the weight associated to the

block that generates it. For example, in Figure 2c the weight

of the edge p1-p2 is 0.2 because they co-occurs in the “street”

block that belongs from the C2 partition, since its a value of

the ”Address” attribute. Also, this example gives an intuition

on how the partitions weights highlights the correct edges. It is

indeed possible to see that the higher weight of C1 increases

the strength of the edges that connects the right entity profiles

(p1-p3, p2-p4), and lowers the weight of the wrong edges (p1-

p2, p3-p4), that will be discarded during the pruning phase.

The meta-blocking algorithm for parallel meta-blocking is

inspired by the broadcast join: it partitions the nodes of the

blocking graph and sends in broadcast (i.e., to each partition)

all the information needed to materialize the neighborhood of

each node one at a time. Once the neighborhood of a node is

materialized, the pruning function is applied.

C. Entity Resolution algorithm.

The output of a (meta-)blocking method is a list of profile

pairs, which are candidate matches. An ER algorithm is

then required to decide whether two profiles are matching

or not, e.g.: by employing similarity functions [11] combined

with hand-tuned thresholds; by asking to the human judges

in a crowd sourcing setting; or by training a classification

algorithm when labeled data are available.

GUI for ER Result Exploration. Blast allows to debug entity

resolution results by selecting set of (possibly non-correctly)

resolved entities and visualize their provenance through the

workflow, i.e., how they ended up to be (or not) matches. Such

a functionality can help in devising/debugging ER algorithms

and in refining the loose schema information (by means of the

functionality introduced in the previous section).

III. EXPERIMENTS

To showcase our system we use the movies dataset,

which compares movies extracted from imdb.com and db-

pedia.org. It contains 48,000 profiles described by two dif-

ferent schemas, which cannot be perfectly aligned. The

dataset comes with a ground-truth that allows to analyze

the meta-blocking performance in terms of precision
and recall. Other three datasets are employed in this

experiment3: Walmart-Amazon, Google-Amazon, and

Abt-Buy. They cover a wide range of scenario (e.g., scientific

papers, e-commerce products, and generic knowledge bases),

have a huge variety of schemata (the largest datasets have

thousands of different attributes), and volume (up to millions

of entities). Yet, for sake of presentation, here we describe the

experiment using the movies dataset.

3Datasets characteristics: https://sourceforge.net/projects/sparker/files/

862

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:54:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Blast GUI screenshots.

We asked to 4 group of undergraduate and graduate CS

students (3 student in each group; each group with a different

dataset; no prior knowledge of the dataset schema): (i) to

explore and modify the automatically extracted loose schema

information; (ii) to analyze the results in order to improve the

discovering of true matches. For brevity we show here only the

most relevant phases, omitting the straightforward preliminary

ones, such as: datasets management and loading, task settings,

etc.

A. Exploring and Editing the Loose Schema Information

During the setups of a new task each user was able to choose

the datasets on which operate and a pre-defined matching

algorithm (based on string similarity measures). The system

elaborates the datasets and generates the loose schema infor-

mation, which is presented to the user through the GUI. For

example, Figure 4b shows the attribute partitions automatically

generated for the movies dataset. The user can edit the

partition of attributes. For each partition, the attributes are

highlighted with different colors according to which datasets

they belong. The weight assigned to the attribute partition is

shown as well: initially they are set equal to the corresponding

attribute partition entropy. The interface also allows: to search

for a specific partition/attribute by using the search box; to

remove/create a partition (not shown in Figure 4); to edit the

partition weights; and to drag&drop attributes from a partition

to another.

The users were asked to launch different run editing of the

loose schema information. This, in order to see each time

how this affect the final result. In fact, the system provides all

the details extracted from the executions logs (e.g. execution

time of each phase, statistics on the datasets, etc.), and also a

summary view through four charts: recall, precision, F1-score

and the execution time (see Figure 4a).

B. Debugging Entity Resolution Workflows.

By employing a subset of labeled data (coming from the

known ground-truth of the datasets), the users were asked

to analyse missed matches. According to that, they were

asked to inject useful knowledge by editing the loose schema

information and to change employed ER algorithm, in order to

improve the final result. This is possible by using the results

explorer (e.g., by searching for a movie name among the

incorrectly resolved ones), which shows how the profiles are

connected in the meta-blocking graph and the choice made

by the ER algorithm. An example is provided in Figure 4b:

for each profile its pruning threshold is listed in orange, and

all its edges with their weights are shown. (Recall that meta-

blocking retains only edges above the threshold.) Grey edges

are the correctly discarded ones (i.e., true negative); green

edges are the correctly kept ones (i.e., true positive); red edges

are the incorrectly discarded ones (i.e., false negative); finally,

the orange edges are the incorrectly maintained ones (false

positive). By changing the partition parameters, it is possible to

see in real-time how the weights change. The number of tokens

the two profiles share is listed for each attribute partition

as well. Hence, following the example, users were asked to

drag&drop attributes. For instance the editor attribute can be

moved from the blob partition 0 (4a) to the attribute partition 1

(4b). By doing that, the edge weights change and the inspected

match is now correctly retained (4b), since the editor of a

863

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:54:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Precision.

Fig. 6: Recall.

movie in the blue dataset (IMDB) sometimes matches director
name of the red one (DBPedia).

C. Quantitative Results.

Figure 5 and Figure 6 report, respectively, the precision and

recall of the results obtained by the 4 groups. The results has

been obtained averaging the result of the components of each

group. In the figures, the results obtained by the users, who

interact with the Blast GUI (Blast refined) are compared to

two baselines: (i) the classical Meta-blocking [7] and (ii) Blast
(without user intervention). Overall, the results obtained by the

users interacting with the GUI show almost the same recall,

with a significant improve in precision.

REFERENCES

[1] F. Guerra, G. Simonini, and M. Vincini, “Supporting image search with
tag clouds: a preliminary approach,” Advances in Multimedia, vol. 2015,
p. 4, 2015.

[2] S. Bergamaschi, F. Guerra, and G. Simonini, “Keyword search over re-
lational databases: Issues, approaches and open challenges,” in Bridging
Between Information Retrieval and Databases. Springer, 2014, pp.
54–73.

[3] S. Bergamaschi, D. Ferrari, F. Guerra, G. Simonini, and Y. Velegrakis,
“Providing insight into data source topics,” Journal on Data Semantics,
vol. 5, no. 4, pp. 211–228, 2016.

[4] G. Simonini and S. Zhu, “Big data exploration with faceted browsing,” in
High Performance Computing & Simulation (HPCS), 2015 International
Conference on. IEEE, 2015, pp. 541–544.

[5] P. Christen, “A survey of indexing techniques for scalable record linkage
and deduplication,” TKDE, vol. 24, no. 9, pp. 1537–1555, 2012.

[6] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, and Y. Park, “Falcon: Scaling up hands-off
crowdsourced entity matching to build cloud services,” SIGMOD ’17,
pp. 1431–1446, 2017.

[7] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl, “Meta-blocking:
Taking entity resolutionto the next level,” TKDE, vol. 26, no. 8, pp.
1946–1960, 2014.

[8] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and
T. Palpanas, “Parallel meta-blocking for scaling entity resolution over
big heterogeneous data,” Inf. Syst., vol. 65, pp. 137–157, 2017.

[9] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi, “Schema-
agnostic Progressive Entity Resolution.” ICDE ’16, 2016.

[10] G. Simonini, S. Bergamaschi, and H. V. Jagadish, “BLAST: a Loosely
Schema-aware Meta-blocking Approach for Entity Resolution.”PVLDB
’16, vol. 9, no. 12, pp. 1173–1184, 2016.

[11] F. Benedetti, D. Beneventano, S. Bergamaschi, and G. Simonini, “Com-
puting inter-document similarity with context semantic analysis,” Inf.
Syst., 2018, ISSN: 03064379.

864

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on April 09,2022 at 20:54:38 UTC from IEEE Xplore. Restrictions apply.

